ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਅੰਤਰ ਦੱਸੋ w.r.t. y
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{8^{1}y^{7}z^{6}}{4^{1}y^{6}z^{5}}
ਐਕਸਪ੍ਰੈਸ਼ਨ ਨੂੰ ਸਰਲ ਬਣਾਉਣ ਲਈ ਐਕਸਪੋਨੈਂਟਾਂ ਦੇ ਨਿਯਮਾਂ ਨੂੰ ਵਰਤੋਂ।
\frac{8^{1}}{4^{1}}y^{7-6}z^{6-5}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਤਕਸੀਮ ਕਰਨ ਲਈ, ਡੀਨੋਮਿਨੇਟਰ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਨਿਉਮਰੇਟਰ ਦੇ ਐਕਸਪੋਨੈਂਟ ਵਿੱਚੋਂ ਘਟਾ ਦਿਓ।
\frac{8^{1}}{4^{1}}y^{1}z^{6-5}
7 ਵਿੱਚੋਂ 6 ਨੂੰ ਘਟਾਓ।
\frac{8^{1}}{4^{1}}yz^{1}
6 ਵਿੱਚੋਂ 5 ਨੂੰ ਘਟਾਓ।
2yz
8 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{8z^{6}}{4z^{5}}y^{7-6})
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਤਕਸੀਮ ਕਰਨ ਲਈ, ਡੀਨੋਮਿਨੇਟਰ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਨਿਉਮਰੇਟਰ ਦੇ ਐਕਸਪੋਨੈਂਟ ਵਿੱਚੋਂ ਘਟਾ ਦਿਓ।
\frac{\mathrm{d}}{\mathrm{d}y}(2zy^{1})
ਗਿਣਤੀ ਕਰੋ।
2zy^{1-1}
ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਇਸ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਡੈਰੀਵੇਟਿਵਸ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਸਥਿਰ ਸੰਖਿਆ ਦਾ ਡੈਰੀਵੇਟਿਵ 0 ਹੁੰਦਾ ਹੈ। ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
2zy^{0}
ਗਿਣਤੀ ਕਰੋ।
2z\times 1
ਕਿਸੇ ਵੀ t ਸੰਖਿਆ ਲਈ, 0, t^{0}=1 ਨੂੰ ਛੱਡ ਕੇ।
2z
ਕਿਸੇ ਸੰਖਿਆ t, t\times 1=t ਅਤੇ 1t=t ਲਈ।