ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਵਾਸਤਵਿਕ ਭਾਗ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{\left(8+4i\right)\left(9+3i\right)}{\left(9-3i\right)\left(9+3i\right)}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਨੂੰ, ਡੀਨੋਮਿਨੇਟਰ 9+3i ਦੇ ਕੋਮਪਲੈਕਸ ਕੰਜੂਗੇਟ (ਸੰਯੁਜਮੀ) ਨਾਲ ਗੁਣਾ ਕਰੋ।
\frac{\left(8+4i\right)\left(9+3i\right)}{9^{2}-3^{2}i^{2}}
ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\frac{\left(8+4i\right)\left(9+3i\right)}{90}
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ। ਡੀਨੋਮਿਨੇਟਰ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
\frac{8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3i^{2}}{90}
ਜਟਿਲ ਸੰਖਿਆਵਾਂ 8+4i ਅਤੇ 9+3i ਨੂੰ ਗੁਣਾ ਕਰੋ, ਜਿਵੇਂ ਤੁਸੀਂ ਬਾਈਨੋਮਿਅਲਸ ਨੂੰ ਗੁਣਾ ਕਰਦੇ ਹੋ।
\frac{8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3\left(-1\right)}{90}
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ।
\frac{72+24i+36i-12}{90}
8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3\left(-1\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{72-12+\left(24+36\right)i}{90}
72+24i+36i-12 ਵਿੱਚ ਵਾਸਤਵਿਕ ਅਤੇ ਕਾਲਪਨਿਕ ਹਿੱਸਿਆਂ ਨੂੰ ਮਿਲਾਓ।
\frac{60+60i}{90}
72-12+\left(24+36\right)i ਵਿੱਚ ਜੋੜ ਕਰੋ।
\frac{2}{3}+\frac{2}{3}i
60+60i ਨੂੰ 90 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{2}{3}+\frac{2}{3}i ਨਿਕਲੇ।
Re(\frac{\left(8+4i\right)\left(9+3i\right)}{\left(9-3i\right)\left(9+3i\right)})
\frac{8+4i}{9-3i} ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਨੂੰ, ਡੀਨੋਮਿਨੇਟਰ 9+3i ਦੇ ਕੋਮਪਲੈਕਸ ਕੰਜੂਗੇਟ (ਸੰਯੁਜਮੀ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
Re(\frac{\left(8+4i\right)\left(9+3i\right)}{9^{2}-3^{2}i^{2}})
ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
Re(\frac{\left(8+4i\right)\left(9+3i\right)}{90})
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ। ਡੀਨੋਮਿਨੇਟਰ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
Re(\frac{8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3i^{2}}{90})
ਜਟਿਲ ਸੰਖਿਆਵਾਂ 8+4i ਅਤੇ 9+3i ਨੂੰ ਗੁਣਾ ਕਰੋ, ਜਿਵੇਂ ਤੁਸੀਂ ਬਾਈਨੋਮਿਅਲਸ ਨੂੰ ਗੁਣਾ ਕਰਦੇ ਹੋ।
Re(\frac{8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3\left(-1\right)}{90})
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ।
Re(\frac{72+24i+36i-12}{90})
8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3\left(-1\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
Re(\frac{72-12+\left(24+36\right)i}{90})
72+24i+36i-12 ਵਿੱਚ ਵਾਸਤਵਿਕ ਅਤੇ ਕਾਲਪਨਿਕ ਹਿੱਸਿਆਂ ਨੂੰ ਮਿਲਾਓ।
Re(\frac{60+60i}{90})
72-12+\left(24+36\right)i ਵਿੱਚ ਜੋੜ ਕਰੋ।
Re(\frac{2}{3}+\frac{2}{3}i)
60+60i ਨੂੰ 90 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{2}{3}+\frac{2}{3}i ਨਿਕਲੇ।
\frac{2}{3}
\frac{2}{3}+\frac{2}{3}i ਦਾ ਅਸਲੀ ਹਿੱਸਾ \frac{2}{3} ਹੈ।