ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

3x+2>0 3x+2<0
ਹਰ 3x+2 ਸਿਫਰ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਤਕਸੀਮ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਦੋ ਸਥਿਤੀਆਂ ਹਨ।
3x>-2
3x+2 ਧਨਾਤਮਕ ਹੋਵੇ ਅਜਿਹੀ ਸਥਿਤੀ ‘ਤੇ ਵਿਚਾਰ ਕਰੋ। 2 ਨੂੰ ਸੱਜੇ ਪਾਸੇ ਵੱਲ ਖਿਸਕਾਓ।
x>-\frac{2}{3}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ। ਕਿਉਂਕਿ 3 ਧਨਾਤਮਕ ਹੈ, ਇਸ ਲਈ ਅਸਮਾਨਤਾ ਦਿਸ਼ਾ ਓਵੇਂ ਹੀ ਰਹਿੰਦੀ ਹੈ।
7x<2\left(3x+2\right)
ਜਦੋਂ 3x+2>0 ਲਈ 3x+2 ਨਾਲ ਗੁਣਾ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਤਾਂ ਸ਼ੁਰੂਆਤੀ ਅਸਮਾਨਤਾ ਦਿਸ਼ਾ ਨਹੀਂ ਬਦਲਦੀ।
7x<6x+4
ਸੱਜੇ ਪਾਸੇ ਨੂੰ ਗੁਣਾ ਕਰੋ।
7x-6x<4
x ਵਾਲੇ ਪਦਾਂ ਨੂੰ ਖੱਬੇ ਪਾਸੇ ਵੱਲ ਖਿਸਕਾਓ ਅਤੇ ਬਾਕੀ ਹੋਰ ਪਦਾਂ ਨੂੰ ਸੱਜੇ ਪਾਸੇ ਵੱਲ ਖਿਸਕਾਓ।
x<4
ਇੱਕ-ਸਮਾਨ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
x\in \left(-\frac{2}{3},4\right)
ਉੱਪਰ ਉੱਲਿਖਤ ਸਥਿਤੀ x>-\frac{2}{3} ਬਾਰੇ ਵਿਚਾਰ ਕਰੋ।
3x<-2
ਹੁਣ 3x+2 ਰਿਣਾਤਮਕ ਹੋਵੇ ਅਜਿਹੀ ਸਥਿਤੀ ‘ਤੇ ਵਿਚਾਰ ਕਰੋ। 2 ਨੂੰ ਸੱਜੇ ਪਾਸੇ ਵੱਲ ਖਿਸਕਾਓ।
x<-\frac{2}{3}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ। ਕਿਉਂਕਿ 3 ਧਨਾਤਮਕ ਹੈ, ਇਸ ਲਈ ਅਸਮਾਨਤਾ ਦਿਸ਼ਾ ਓਵੇਂ ਹੀ ਰਹਿੰਦੀ ਹੈ।
7x>2\left(3x+2\right)
ਜਦੋਂ 3x+2<0 ਲਈ 3x+2 ਨਾਲ ਗੁਣਾ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਤਾਂ ਸ਼ੁਰੂਆਤੀ ਅਸਮਾਨਤਾ ਦਿਸ਼ਾ ਬਦਲਦੀ ਹੈ।
7x>6x+4
ਸੱਜੇ ਪਾਸੇ ਨੂੰ ਗੁਣਾ ਕਰੋ।
7x-6x>4
x ਵਾਲੇ ਪਦਾਂ ਨੂੰ ਖੱਬੇ ਪਾਸੇ ਵੱਲ ਖਿਸਕਾਓ ਅਤੇ ਬਾਕੀ ਹੋਰ ਪਦਾਂ ਨੂੰ ਸੱਜੇ ਪਾਸੇ ਵੱਲ ਖਿਸਕਾਓ।
x>4
ਇੱਕ-ਸਮਾਨ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
x\in \emptyset
ਉੱਪਰ ਉੱਲਿਖਤ ਸਥਿਤੀ x<-\frac{2}{3} ਬਾਰੇ ਵਿਚਾਰ ਕਰੋ।
x\in \left(-\frac{2}{3},4\right)
ਅੰਤਿਮ ਹੱਲ ਹਾਸਲ ਕੀਤੇ ਹੱਲਾਂ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ।