ਮੁਲਾਂਕਣ ਕਰੋ
\frac{353}{30}\approx 11.766666667
ਫੈਕਟਰ
\frac{353}{2 \cdot 3 \cdot 5} = 11\frac{23}{30} = 11.766666666666667
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{7\times 2}{12\times 7}+\frac{\frac{1}{3}}{\frac{5}{6}}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{7}{12} ਟਾਈਮਸ \frac{2}{7} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{2}{12}+\frac{\frac{1}{3}}{\frac{5}{6}}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ 7 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{1}{6}+\frac{\frac{1}{3}}{\frac{5}{6}}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{2}{12} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{1}{6}+\frac{1}{3}\times \frac{6}{5}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
\frac{1}{3} ਨੂੰ \frac{5}{6} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{1}{3}ਨੂੰ \frac{5}{6} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{1}{6}+\frac{1\times 6}{3\times 5}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{1}{3} ਟਾਈਮਸ \frac{6}{5} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{1}{6}+\frac{6}{15}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
\frac{1\times 6}{3\times 5} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{1}{6}+\frac{2}{5}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{6}{15} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{1}{6}+\frac{2}{5}\left(\frac{4}{6}+\frac{1}{6}+\frac{3}{8}\right)\times 24
3 ਅਤੇ 6 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 6 ਹੈ। \frac{2}{3} ਅਤੇ \frac{1}{6} ਨੂੰ 6 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{1}{6}+\frac{2}{5}\left(\frac{4+1}{6}+\frac{3}{8}\right)\times 24
ਕਿਉਂਕਿ \frac{4}{6} ਅਤੇ \frac{1}{6} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{1}{6}+\frac{2}{5}\left(\frac{5}{6}+\frac{3}{8}\right)\times 24
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
\frac{1}{6}+\frac{2}{5}\left(\frac{20}{24}+\frac{9}{24}\right)\times 24
6 ਅਤੇ 8 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 24 ਹੈ। \frac{5}{6} ਅਤੇ \frac{3}{8} ਨੂੰ 24 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{1}{6}+\frac{2}{5}\times \frac{20+9}{24}\times 24
ਕਿਉਂਕਿ \frac{20}{24} ਅਤੇ \frac{9}{24} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{1}{6}+\frac{2}{5}\times \frac{29}{24}\times 24
29 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 20 ਅਤੇ 9 ਨੂੰ ਜੋੜੋ।
\frac{1}{6}+\frac{2\times 29}{5\times 24}\times 24
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{2}{5} ਟਾਈਮਸ \frac{29}{24} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{1}{6}+\frac{58}{120}\times 24
\frac{2\times 29}{5\times 24} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{1}{6}+\frac{29}{60}\times 24
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{58}{120} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{1}{6}+\frac{29\times 24}{60}
\frac{29}{60}\times 24 ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{1}{6}+\frac{696}{60}
696 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 29 ਅਤੇ 24 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{1}{6}+\frac{58}{5}
12 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{696}{60} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{5}{30}+\frac{348}{30}
6 ਅਤੇ 5 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 30 ਹੈ। \frac{1}{6} ਅਤੇ \frac{58}{5} ਨੂੰ 30 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{5+348}{30}
ਕਿਉਂਕਿ \frac{5}{30} ਅਤੇ \frac{348}{30} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{353}{30}
353 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 348 ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}