ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\left(x-10\right)\times 60+\left(x+10\right)\times 60=8\left(x-10\right)\left(x+10\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -10,10 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-10\right)\left(x+10\right), ਜੋ x+10,x-10 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
60x-600+\left(x+10\right)\times 60=8\left(x-10\right)\left(x+10\right)
x-10 ਨੂੰ 60 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
60x-600+60x+600=8\left(x-10\right)\left(x+10\right)
x+10 ਨੂੰ 60 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
120x-600+600=8\left(x-10\right)\left(x+10\right)
120x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 60x ਅਤੇ 60x ਨੂੰ ਮਿਲਾਓ।
120x=8\left(x-10\right)\left(x+10\right)
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -600 ਅਤੇ 600 ਨੂੰ ਜੋੜੋ।
120x=\left(8x-80\right)\left(x+10\right)
8 ਨੂੰ x-10 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
120x=8x^{2}-800
8x-80 ਨੂੰ x+10 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
120x-8x^{2}=-800
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
120x-8x^{2}+800=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 800 ਜੋੜੋ।
-8x^{2}+120x+800=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-120±\sqrt{120^{2}-4\left(-8\right)\times 800}}{2\left(-8\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -8 ਨੂੰ a ਲਈ, 120 ਨੂੰ b ਲਈ, ਅਤੇ 800 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-120±\sqrt{14400-4\left(-8\right)\times 800}}{2\left(-8\right)}
120 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-120±\sqrt{14400+32\times 800}}{2\left(-8\right)}
-4 ਨੂੰ -8 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-120±\sqrt{14400+25600}}{2\left(-8\right)}
32 ਨੂੰ 800 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-120±\sqrt{40000}}{2\left(-8\right)}
14400 ਨੂੰ 25600 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-120±200}{2\left(-8\right)}
40000 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-120±200}{-16}
2 ਨੂੰ -8 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{80}{-16}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-120±200}{-16} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -120 ਨੂੰ 200 ਵਿੱਚ ਜੋੜੋ।
x=-5
80 ਨੂੰ -16 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{320}{-16}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-120±200}{-16} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -120 ਵਿੱਚੋਂ 200 ਨੂੰ ਘਟਾਓ।
x=20
-320 ਨੂੰ -16 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-5 x=20
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\left(x-10\right)\times 60+\left(x+10\right)\times 60=8\left(x-10\right)\left(x+10\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -10,10 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-10\right)\left(x+10\right), ਜੋ x+10,x-10 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
60x-600+\left(x+10\right)\times 60=8\left(x-10\right)\left(x+10\right)
x-10 ਨੂੰ 60 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
60x-600+60x+600=8\left(x-10\right)\left(x+10\right)
x+10 ਨੂੰ 60 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
120x-600+600=8\left(x-10\right)\left(x+10\right)
120x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 60x ਅਤੇ 60x ਨੂੰ ਮਿਲਾਓ।
120x=8\left(x-10\right)\left(x+10\right)
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -600 ਅਤੇ 600 ਨੂੰ ਜੋੜੋ।
120x=\left(8x-80\right)\left(x+10\right)
8 ਨੂੰ x-10 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
120x=8x^{2}-800
8x-80 ਨੂੰ x+10 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
120x-8x^{2}=-800
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-8x^{2}+120x=-800
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-8x^{2}+120x}{-8}=-\frac{800}{-8}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -8 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{120}{-8}x=-\frac{800}{-8}
-8 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -8 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-15x=-\frac{800}{-8}
120 ਨੂੰ -8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-15x=100
-800 ਨੂੰ -8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=100+\left(-\frac{15}{2}\right)^{2}
-15, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{15}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{15}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-15x+\frac{225}{4}=100+\frac{225}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{15}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-15x+\frac{225}{4}=\frac{625}{4}
100 ਨੂੰ \frac{225}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{15}{2}\right)^{2}=\frac{625}{4}
ਫੈਕਟਰ x^{2}-15x+\frac{225}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{625}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{15}{2}=\frac{25}{2} x-\frac{15}{2}=-\frac{25}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=20 x=-5
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{15}{2} ਨੂੰ ਜੋੜੋ।