x ਲਈ ਹਲ ਕਰੋ
x=\frac{8\sqrt{3}-6}{13}\approx 0.604338959
x=\frac{-8\sqrt{3}-6}{13}\approx -1.527415882
ਗ੍ਰਾਫ
ਕੁਇਜ਼
Quadratic Equation
5 ਪ੍ਰਸ਼ਨ ਇਸ ਵਰਗੇ ਹਨ:
\frac { 6 } { x ^ { 2 } } = \frac { 32 } { ( 2 - x ) ^ { 2 } }
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(x-2\right)^{2}\times 6=x^{2}\times 32
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ 0,2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x^{2}\left(x-2\right)^{2}, ਜੋ x^{2},\left(2-x\right)^{2} ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(x^{2}-4x+4\right)\times 6=x^{2}\times 32
\left(x-2\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
6x^{2}-24x+24=x^{2}\times 32
x^{2}-4x+4 ਨੂੰ 6 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
6x^{2}-24x+24-x^{2}\times 32=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2}\times 32 ਨੂੰ ਘਟਾ ਦਿਓ।
-26x^{2}-24x+24=0
-26x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6x^{2} ਅਤੇ -x^{2}\times 32 ਨੂੰ ਮਿਲਾਓ।
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\left(-26\right)\times 24}}{2\left(-26\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -26 ਨੂੰ a ਲਈ, -24 ਨੂੰ b ਲਈ, ਅਤੇ 24 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-24\right)±\sqrt{576-4\left(-26\right)\times 24}}{2\left(-26\right)}
-24 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-24\right)±\sqrt{576+104\times 24}}{2\left(-26\right)}
-4 ਨੂੰ -26 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-24\right)±\sqrt{576+2496}}{2\left(-26\right)}
104 ਨੂੰ 24 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-24\right)±\sqrt{3072}}{2\left(-26\right)}
576 ਨੂੰ 2496 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-24\right)±32\sqrt{3}}{2\left(-26\right)}
3072 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{24±32\sqrt{3}}{2\left(-26\right)}
-24 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 24 ਹੈ।
x=\frac{24±32\sqrt{3}}{-52}
2 ਨੂੰ -26 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{32\sqrt{3}+24}{-52}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{24±32\sqrt{3}}{-52} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 24 ਨੂੰ 32\sqrt{3} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-8\sqrt{3}-6}{13}
24+32\sqrt{3} ਨੂੰ -52 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{24-32\sqrt{3}}{-52}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{24±32\sqrt{3}}{-52} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 24 ਵਿੱਚੋਂ 32\sqrt{3} ਨੂੰ ਘਟਾਓ।
x=\frac{8\sqrt{3}-6}{13}
24-32\sqrt{3} ਨੂੰ -52 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-8\sqrt{3}-6}{13} x=\frac{8\sqrt{3}-6}{13}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\left(x-2\right)^{2}\times 6=x^{2}\times 32
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ 0,2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x^{2}\left(x-2\right)^{2}, ਜੋ x^{2},\left(2-x\right)^{2} ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(x^{2}-4x+4\right)\times 6=x^{2}\times 32
\left(x-2\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
6x^{2}-24x+24=x^{2}\times 32
x^{2}-4x+4 ਨੂੰ 6 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
6x^{2}-24x+24-x^{2}\times 32=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2}\times 32 ਨੂੰ ਘਟਾ ਦਿਓ।
-26x^{2}-24x+24=0
-26x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6x^{2} ਅਤੇ -x^{2}\times 32 ਨੂੰ ਮਿਲਾਓ।
-26x^{2}-24x=-24
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 24 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
\frac{-26x^{2}-24x}{-26}=-\frac{24}{-26}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -26 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{24}{-26}\right)x=-\frac{24}{-26}
-26 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -26 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{12}{13}x=-\frac{24}{-26}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-24}{-26} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{12}{13}x=\frac{12}{13}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-24}{-26} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{12}{13}x+\left(\frac{6}{13}\right)^{2}=\frac{12}{13}+\left(\frac{6}{13}\right)^{2}
\frac{12}{13}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{6}{13} ਨਿਕਲੇ। ਫੇਰ, \frac{6}{13} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{12}{13}x+\frac{36}{169}=\frac{12}{13}+\frac{36}{169}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{6}{13} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{12}{13}x+\frac{36}{169}=\frac{192}{169}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{12}{13} ਨੂੰ \frac{36}{169} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{6}{13}\right)^{2}=\frac{192}{169}
ਫੈਕਟਰ x^{2}+\frac{12}{13}x+\frac{36}{169}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{6}{13}\right)^{2}}=\sqrt{\frac{192}{169}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{6}{13}=\frac{8\sqrt{3}}{13} x+\frac{6}{13}=-\frac{8\sqrt{3}}{13}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{8\sqrt{3}-6}{13} x=\frac{-8\sqrt{3}-6}{13}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{6}{13} ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}