ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

5\times 6=\left(x+2\right)\left(x-5\right)
ਵੇਰੀਏਬਲ x, -2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 10\left(x+2\right), ਜੋ 2x+4,10 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
30=\left(x+2\right)\left(x-5\right)
30 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 6 ਨੂੰ ਗੁਣਾ ਕਰੋ।
30=x^{2}-3x-10
x+2 ਨੂੰ x-5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
x^{2}-3x-10=30
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
x^{2}-3x-10-30=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 30 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-3x-40=0
-40 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -10 ਵਿੱਚੋਂ 30 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-40\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, -3 ਨੂੰ b ਲਈ, ਅਤੇ -40 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-40\right)}}{2}
-3 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-3\right)±\sqrt{9+160}}{2}
-4 ਨੂੰ -40 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-3\right)±\sqrt{169}}{2}
9 ਨੂੰ 160 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-3\right)±13}{2}
169 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{3±13}{2}
-3 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 3 ਹੈ।
x=\frac{16}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{3±13}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 3 ਨੂੰ 13 ਵਿੱਚ ਜੋੜੋ।
x=8
16 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{10}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{3±13}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 3 ਵਿੱਚੋਂ 13 ਨੂੰ ਘਟਾਓ।
x=-5
-10 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=8 x=-5
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
5\times 6=\left(x+2\right)\left(x-5\right)
ਵੇਰੀਏਬਲ x, -2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 10\left(x+2\right), ਜੋ 2x+4,10 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
30=\left(x+2\right)\left(x-5\right)
30 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 6 ਨੂੰ ਗੁਣਾ ਕਰੋ।
30=x^{2}-3x-10
x+2 ਨੂੰ x-5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
x^{2}-3x-10=30
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
x^{2}-3x=30+10
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 10 ਜੋੜੋ।
x^{2}-3x=40
40 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 30 ਅਤੇ 10 ਨੂੰ ਜੋੜੋ।
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=40+\left(-\frac{3}{2}\right)^{2}
-3, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{3}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{3}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-3x+\frac{9}{4}=40+\frac{9}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{3}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-3x+\frac{9}{4}=\frac{169}{4}
40 ਨੂੰ \frac{9}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{3}{2}\right)^{2}=\frac{169}{4}
ਫੈਕਟਰ x^{2}-3x+\frac{9}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{3}{2}=\frac{13}{2} x-\frac{3}{2}=-\frac{13}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=8 x=-5
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{3}{2} ਨੂੰ ਜੋੜੋ।