ਮੁਲਾਂਕਣ ਕਰੋ
25\sqrt{3}+75\approx 118.301270189
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{50}{\frac{3}{3}-\frac{\sqrt{3}}{3}}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 1 ਨੂੰ \frac{3}{3} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{50}{\frac{3-\sqrt{3}}{3}}
ਕਿਉਂਕਿ \frac{3}{3} ਅਤੇ \frac{\sqrt{3}}{3} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{50\times 3}{3-\sqrt{3}}
50 ਨੂੰ \frac{3-\sqrt{3}}{3} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 50ਨੂੰ \frac{3-\sqrt{3}}{3} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{50\times 3\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ 3+\sqrt{3} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{50\times 3}{3-\sqrt{3}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{50\times 3\left(3+\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}
\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\frac{50\times 3\left(3+\sqrt{3}\right)}{9-3}
3 ਦਾ ਵਰਗ ਕਰੋ। \sqrt{3} ਦਾ ਵਰਗ ਕਰੋ।
\frac{50\times 3\left(3+\sqrt{3}\right)}{6}
6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9 ਵਿੱਚੋਂ 3 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{150\left(3+\sqrt{3}\right)}{6}
150 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 50 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
25\left(3+\sqrt{3}\right)
150\left(3+\sqrt{3}\right) ਨੂੰ 6 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 25\left(3+\sqrt{3}\right) ਨਿਕਲੇ।
75+25\sqrt{3}
25 ਨੂੰ 3+\sqrt{3} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}