ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

4\left(5-2x\right)+48<3\left(3x-5\right)\times \frac{3x}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 12, ਜੋ 3,4,2 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ। ਕਿਉਂਕਿ 12 ਧਨਾਤਮਕ ਹੈ, ਇਸ ਲਈ ਅਸਮਾਨਤਾ ਦਿਸ਼ਾ ਓਵੇਂ ਹੀ ਰਹਿੰਦੀ ਹੈ।
20-8x+48<3\left(3x-5\right)\times \frac{3x}{2}
4 ਨੂੰ 5-2x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
68-8x<3\left(3x-5\right)\times \frac{3x}{2}
68 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 20 ਅਤੇ 48 ਨੂੰ ਜੋੜੋ।
68-8x<\frac{3\times 3x}{2}\left(3x-5\right)
3\times \frac{3x}{2} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
68-8x<3\times \frac{x\times 3^{2}}{2}x-5\times \frac{3\times 3x}{2}
\frac{3\times 3x}{2} ਨੂੰ 3x-5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
68-8x<3\times \frac{x\times 9}{2}x-5\times \frac{3\times 3x}{2}
3 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 9 ਪ੍ਰਾਪਤ ਕਰੋ।
68-8x<\frac{3x\times 9}{2}x-5\times \frac{3\times 3x}{2}
3\times \frac{x\times 9}{2} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
68-8x<\frac{3x\times 9x}{2}-5\times \frac{3\times 3x}{2}
\frac{3x\times 9}{2}x ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
68-8x<\frac{3x\times 9x}{2}-5\times \frac{9x}{2}
9 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
68-8x<\frac{3x\times 9x}{2}+\frac{-5\times 9x}{2}
-5\times \frac{9x}{2} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
68-8x<\frac{3x\times 9x-5\times 9x}{2}
ਕਿਉਂਕਿ \frac{3x\times 9x}{2} ਅਤੇ \frac{-5\times 9x}{2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
68-8x<\frac{27x^{2}-45x}{2}
3x\times 9x-5\times 9x ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
68-8x<\frac{27}{2}x^{2}-\frac{45}{2}x
27x^{2}-45x ਦੇ ਹਰ ਅੰਕ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{27}{2}x^{2}-\frac{45}{2}x ਨਿਕਲੇ।
68-8x-\frac{27}{2}x^{2}<-\frac{45}{2}x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{27}{2}x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
68-8x-\frac{27}{2}x^{2}+\frac{45}{2}x<0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{45}{2}x ਜੋੜੋ।
68+\frac{29}{2}x-\frac{27}{2}x^{2}<0
\frac{29}{2}x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -8x ਅਤੇ \frac{45}{2}x ਨੂੰ ਮਿਲਾਓ।
-68-\frac{29}{2}x+\frac{27}{2}x^{2}>0
ਅਸਮਾਨਤਾ ਨੂੰ -1 ਨਾਲ ਗੁਣਾ ਕਰੋ, ਤਾਂ ਜੋ ਉੱਚਤਮ ਪਾਵਰ ਦਾ ਕੋਐਫੀਸ਼ੀਐਂਟ 68+\frac{29}{2}x-\frac{27}{2}x^{2} ਪੋਜ਼ੇਟਿਵ ਵਿੱਚ ਹੋਵੇ। ਕਿਉਂਕਿ -1 ਰਿਣਾਤਮਕ ਹੈ, ਇਸ ਲਈ ਅਸਮਾਨਤਾ ਦਿਸ਼ਾ ਬਦਲ ਜਾਂਦੀ ਹੈ।
-68-\frac{29}{2}x+\frac{27}{2}x^{2}=0
ਅਸਮਾਨਤਾ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਖੱਬੇ ਪਾਸੇ ਦੇ ਫੈਕਟਰ ਬਣਾਓ। ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-\left(-\frac{29}{2}\right)±\sqrt{\left(-\frac{29}{2}\right)^{2}-4\times \frac{27}{2}\left(-68\right)}}{2\times \frac{27}{2}}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ \frac{27}{2} ਨੂੰ a ਦੇ ਨਾਲ, -\frac{29}{2} ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ -68 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
x=\frac{\frac{29}{2}±\frac{1}{2}\sqrt{15529}}{27}
ਗਣਨਾਵਾਂ ਕਰੋ।
x=\frac{\sqrt{15529}+29}{54} x=\frac{29-\sqrt{15529}}{54}
x=\frac{\frac{29}{2}±\frac{1}{2}\sqrt{15529}}{27} ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
\frac{27}{2}\left(x-\frac{\sqrt{15529}+29}{54}\right)\left(x-\frac{29-\sqrt{15529}}{54}\right)>0
ਪ੍ਰਾਪਤ ਕੀਤੇ ਹੱਲਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਸਮਾਨਤਾ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
x-\frac{\sqrt{15529}+29}{54}<0 x-\frac{29-\sqrt{15529}}{54}<0
ਗੁਣਜ ਨੂੰ ਪੋਜ਼ੇਟਿਵ ਹੋਣ ਲਈ, x-\frac{\sqrt{15529}+29}{54} ਅਤੇ x-\frac{29-\sqrt{15529}}{54} ਨੂੰ ਦੋਵੇਂ ਪੋਜ਼ੇਟਿਵ ਜਾਂ ਦੋਵੇਂ ਨੇਗੇਟਿਵ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਜਦੋਂ x-\frac{\sqrt{15529}+29}{54} ਅਤੇ x-\frac{29-\sqrt{15529}}{54} ਦੋਵੇ ਨੇਗੇਟਿਵ ਹੋਣ ਤਾਂ ਮਾਮਲੇ 'ਤੇ ਵਿਚਾਰ ਕਰੋ।
x<\frac{29-\sqrt{15529}}{54}
ਦੋਵੇਂ ਅਸਮਾਨਤਾਵਾਂ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰ ਰਿਹਾ ਹੱਲ x<\frac{29-\sqrt{15529}}{54} ਹੁੰਦਾ ਹੈ।
x-\frac{29-\sqrt{15529}}{54}>0 x-\frac{\sqrt{15529}+29}{54}>0
ਜਦੋਂ x-\frac{\sqrt{15529}+29}{54} ਅਤੇ x-\frac{29-\sqrt{15529}}{54} ਦੋਵੇਂ ਪੋਜ਼ੇਟਿਵ ਹੋਣ ਤਾਂ ਮਾਮਲੇ 'ਤੇ ਵਿਚਾਰ ਕਰੋ।
x>\frac{\sqrt{15529}+29}{54}
ਦੋਵੇਂ ਅਸਮਾਨਤਾਵਾਂ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰ ਰਿਹਾ ਹੱਲ x>\frac{\sqrt{15529}+29}{54} ਹੁੰਦਾ ਹੈ।
x<\frac{29-\sqrt{15529}}{54}\text{; }x>\frac{\sqrt{15529}+29}{54}
ਅੰਤਿਮ ਹੱਲ ਹਾਸਲ ਕੀਤੇ ਹੱਲਾਂ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ।