x ਲਈ ਹਲ ਕਰੋ
x=-2
x=12
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
x\left(x+6\right)\times 5-x\left(x-2\right)\times 3=\left(x-2\right)\left(x+6\right)\times 4
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -6,0,2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x\left(x-2\right)\left(x+6\right), ਜੋ x-2,x+6,x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(x^{2}+6x\right)\times 5-x\left(x-2\right)\times 3=\left(x-2\right)\left(x+6\right)\times 4
x ਨੂੰ x+6 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
5x^{2}+30x-x\left(x-2\right)\times 3=\left(x-2\right)\left(x+6\right)\times 4
x^{2}+6x ਨੂੰ 5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
5x^{2}+30x-\left(x^{2}-2x\right)\times 3=\left(x-2\right)\left(x+6\right)\times 4
x ਨੂੰ x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
5x^{2}+30x-\left(3x^{2}-6x\right)=\left(x-2\right)\left(x+6\right)\times 4
x^{2}-2x ਨੂੰ 3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
5x^{2}+30x-3x^{2}+6x=\left(x-2\right)\left(x+6\right)\times 4
3x^{2}-6x ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
2x^{2}+30x+6x=\left(x-2\right)\left(x+6\right)\times 4
2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5x^{2} ਅਤੇ -3x^{2} ਨੂੰ ਮਿਲਾਓ।
2x^{2}+36x=\left(x-2\right)\left(x+6\right)\times 4
36x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 30x ਅਤੇ 6x ਨੂੰ ਮਿਲਾਓ।
2x^{2}+36x=\left(x^{2}+4x-12\right)\times 4
x-2 ਨੂੰ x+6 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
2x^{2}+36x=4x^{2}+16x-48
x^{2}+4x-12 ਨੂੰ 4 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2x^{2}+36x-4x^{2}=16x-48
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-2x^{2}+36x=16x-48
-2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x^{2} ਅਤੇ -4x^{2} ਨੂੰ ਮਿਲਾਓ।
-2x^{2}+36x-16x=-48
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 16x ਨੂੰ ਘਟਾ ਦਿਓ।
-2x^{2}+20x=-48
20x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 36x ਅਤੇ -16x ਨੂੰ ਮਿਲਾਓ।
-2x^{2}+20x+48=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 48 ਜੋੜੋ।
x=\frac{-20±\sqrt{20^{2}-4\left(-2\right)\times 48}}{2\left(-2\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -2 ਨੂੰ a ਲਈ, 20 ਨੂੰ b ਲਈ, ਅਤੇ 48 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-20±\sqrt{400-4\left(-2\right)\times 48}}{2\left(-2\right)}
20 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-20±\sqrt{400+8\times 48}}{2\left(-2\right)}
-4 ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-20±\sqrt{400+384}}{2\left(-2\right)}
8 ਨੂੰ 48 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-20±\sqrt{784}}{2\left(-2\right)}
400 ਨੂੰ 384 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-20±28}{2\left(-2\right)}
784 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-20±28}{-4}
2 ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{8}{-4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-20±28}{-4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -20 ਨੂੰ 28 ਵਿੱਚ ਜੋੜੋ।
x=-2
8 ਨੂੰ -4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{48}{-4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-20±28}{-4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -20 ਵਿੱਚੋਂ 28 ਨੂੰ ਘਟਾਓ।
x=12
-48 ਨੂੰ -4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-2 x=12
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x\left(x+6\right)\times 5-x\left(x-2\right)\times 3=\left(x-2\right)\left(x+6\right)\times 4
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -6,0,2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x\left(x-2\right)\left(x+6\right), ਜੋ x-2,x+6,x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(x^{2}+6x\right)\times 5-x\left(x-2\right)\times 3=\left(x-2\right)\left(x+6\right)\times 4
x ਨੂੰ x+6 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
5x^{2}+30x-x\left(x-2\right)\times 3=\left(x-2\right)\left(x+6\right)\times 4
x^{2}+6x ਨੂੰ 5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
5x^{2}+30x-\left(x^{2}-2x\right)\times 3=\left(x-2\right)\left(x+6\right)\times 4
x ਨੂੰ x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
5x^{2}+30x-\left(3x^{2}-6x\right)=\left(x-2\right)\left(x+6\right)\times 4
x^{2}-2x ਨੂੰ 3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
5x^{2}+30x-3x^{2}+6x=\left(x-2\right)\left(x+6\right)\times 4
3x^{2}-6x ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
2x^{2}+30x+6x=\left(x-2\right)\left(x+6\right)\times 4
2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5x^{2} ਅਤੇ -3x^{2} ਨੂੰ ਮਿਲਾਓ।
2x^{2}+36x=\left(x-2\right)\left(x+6\right)\times 4
36x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 30x ਅਤੇ 6x ਨੂੰ ਮਿਲਾਓ।
2x^{2}+36x=\left(x^{2}+4x-12\right)\times 4
x-2 ਨੂੰ x+6 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
2x^{2}+36x=4x^{2}+16x-48
x^{2}+4x-12 ਨੂੰ 4 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2x^{2}+36x-4x^{2}=16x-48
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-2x^{2}+36x=16x-48
-2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x^{2} ਅਤੇ -4x^{2} ਨੂੰ ਮਿਲਾਓ।
-2x^{2}+36x-16x=-48
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 16x ਨੂੰ ਘਟਾ ਦਿਓ।
-2x^{2}+20x=-48
20x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 36x ਅਤੇ -16x ਨੂੰ ਮਿਲਾਓ।
\frac{-2x^{2}+20x}{-2}=-\frac{48}{-2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{20}{-2}x=-\frac{48}{-2}
-2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-10x=-\frac{48}{-2}
20 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-10x=24
-48 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-10x+\left(-5\right)^{2}=24+\left(-5\right)^{2}
-10, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -5 ਨਿਕਲੇ। ਫੇਰ, -5 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-10x+25=24+25
-5 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}-10x+25=49
24 ਨੂੰ 25 ਵਿੱਚ ਜੋੜੋ।
\left(x-5\right)^{2}=49
ਫੈਕਟਰ x^{2}-10x+25। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-5\right)^{2}}=\sqrt{49}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-5=7 x-5=-7
ਸਪਸ਼ਟ ਕਰੋ।
x=12 x=-2
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 5 ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}