ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਅੰਤਰ ਦੱਸੋ w.r.t. x
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{5}{x+1}-\frac{2}{14}
14 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 17 ਵਿੱਚੋਂ 3 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{5}{x+1}-\frac{1}{7}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{2}{14} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{5\times 7}{7\left(x+1\right)}-\frac{x+1}{7\left(x+1\right)}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। x+1 ਅਤੇ 7 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 7\left(x+1\right) ਹੈ। \frac{5}{x+1} ਨੂੰ \frac{7}{7} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{1}{7} ਨੂੰ \frac{x+1}{x+1} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{5\times 7-\left(x+1\right)}{7\left(x+1\right)}
ਕਿਉਂਕਿ \frac{5\times 7}{7\left(x+1\right)} ਅਤੇ \frac{x+1}{7\left(x+1\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{35-x-1}{7\left(x+1\right)}
5\times 7-\left(x+1\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{34-x}{7\left(x+1\right)}
35-x-1 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{34-x}{7x+7}
7\left(x+1\right) ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{x+1}-\frac{2}{14})
14 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 17 ਵਿੱਚੋਂ 3 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{x+1}-\frac{1}{7})
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{2}{14} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\times 7}{7\left(x+1\right)}-\frac{x+1}{7\left(x+1\right)})
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। x+1 ਅਤੇ 7 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 7\left(x+1\right) ਹੈ। \frac{5}{x+1} ਨੂੰ \frac{7}{7} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{1}{7} ਨੂੰ \frac{x+1}{x+1} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\times 7-\left(x+1\right)}{7\left(x+1\right)})
ਕਿਉਂਕਿ \frac{5\times 7}{7\left(x+1\right)} ਅਤੇ \frac{x+1}{7\left(x+1\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{35-x-1}{7\left(x+1\right)})
5\times 7-\left(x+1\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{34-x}{7\left(x+1\right)})
35-x-1 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{34-x}{7x+7})
7 ਨੂੰ x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\frac{\left(7x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+34)-\left(-x^{1}+34\right)\frac{\mathrm{d}}{\mathrm{d}x}(7x^{1}+7)}{\left(7x^{1}+7\right)^{2}}
ਅੰਤਰ ਕੱਢਣ ਯੋਗ ਕਿਸੇ ਦੋ ਫੰਗਸ਼ਨ ਲਈ, ਦੋ ਫੰਗਸ਼ਨਾਂ ਦੇ ਭਾਗਫਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਨਿਉਮਰੇਟਰ ਦੇ ਡੈਰੀਵੇਟਿਵ ਨਾਲ ਗੁਣਾ ਕਰਕੇ, - ਨਿਉਮਰੇਟਰ ਨੂੰ ਡੀਨੋਮਿਨੇਟਰ ਨਾਲ ਗੁਣਾ ਕਰਕੇ, ਸਾਰੇ ਵਰਗ ਵਿੱਚ ਰੱਖੇ ਡੀਨੋਮਿਨੇਟਰ ਨਾਲ ਤਕਸੀਮ ਕਰਕੇ ਨਿਕਲਦਾ ਹੈ।
\frac{\left(7x^{1}+7\right)\left(-1\right)x^{1-1}-\left(-x^{1}+34\right)\times 7x^{1-1}}{\left(7x^{1}+7\right)^{2}}
ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਇਸ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਡੈਰੀਵੇਟਿਵਸ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਸਥਿਰ ਸੰਖਿਆ ਦਾ ਡੈਰੀਵੇਟਿਵ 0 ਹੁੰਦਾ ਹੈ। ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
\frac{\left(7x^{1}+7\right)\left(-1\right)x^{0}-\left(-x^{1}+34\right)\times 7x^{0}}{\left(7x^{1}+7\right)^{2}}
ਗਿਣਤੀ ਕਰੋ।
\frac{7x^{1}\left(-1\right)x^{0}+7\left(-1\right)x^{0}-\left(-x^{1}\times 7x^{0}+34\times 7x^{0}\right)}{\left(7x^{1}+7\right)^{2}}
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤਦਿਆਂ ਵਿਸਥਾਰ ਕਰੋ।
\frac{7\left(-1\right)x^{1}+7\left(-1\right)x^{0}-\left(-7x^{1}+34\times 7x^{0}\right)}{\left(7x^{1}+7\right)^{2}}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ।
\frac{-7x^{1}-7x^{0}-\left(-7x^{1}+238x^{0}\right)}{\left(7x^{1}+7\right)^{2}}
ਗਿਣਤੀ ਕਰੋ।
\frac{-7x^{1}-7x^{0}-\left(-7x^{1}\right)-238x^{0}}{\left(7x^{1}+7\right)^{2}}
ਬੇਲੋੜੀਆਂ ਬ੍ਰੈਕਟਾਂ ਨੂੰ ਹਟਾਓ।
\frac{\left(-7-\left(-7\right)\right)x^{1}+\left(-7-238\right)x^{0}}{\left(7x^{1}+7\right)^{2}}
ਇੱਕ-ਸਮਾਨ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\frac{-245x^{0}}{\left(7x^{1}+7\right)^{2}}
-7 ਵਿੱਚੋਂ -7 ਅਤੇ -7 ਵਿੱਚੋਂ 238 ਨੂੰ ਘਟਾਓ।
\frac{-245x^{0}}{\left(7x+7\right)^{2}}
ਕਿਸੇ t, t^{1}=t ਸੰਖਿਆ ਲਈ।
\frac{-245}{\left(7x+7\right)^{2}}
ਕਿਸੇ ਵੀ t ਸੰਖਿਆ ਲਈ, 0, t^{0}=1 ਨੂੰ ਛੱਡ ਕੇ।