ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

4x^{2}+\left(x-5\right)\left(2x-24x-120\right)=0
ਵੇਰੀਏਬਲ x, 5 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-5\right)^{2}, ਜੋ x^{2}+25-10x,x-5 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
4x^{2}+\left(x-5\right)\left(-22x-120\right)=0
-22x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x ਅਤੇ -24x ਨੂੰ ਮਿਲਾਓ।
4x^{2}-22x^{2}-10x+600=0
x-5 ਨੂੰ -22x-120 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
-18x^{2}-10x+600=0
-18x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x^{2} ਅਤੇ -22x^{2} ਨੂੰ ਮਿਲਾਓ।
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-18\right)\times 600}}{2\left(-18\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -18 ਨੂੰ a ਲਈ, -10 ਨੂੰ b ਲਈ, ਅਤੇ 600 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-18\right)\times 600}}{2\left(-18\right)}
-10 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-10\right)±\sqrt{100+72\times 600}}{2\left(-18\right)}
-4 ਨੂੰ -18 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-10\right)±\sqrt{100+43200}}{2\left(-18\right)}
72 ਨੂੰ 600 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-10\right)±\sqrt{43300}}{2\left(-18\right)}
100 ਨੂੰ 43200 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-10\right)±10\sqrt{433}}{2\left(-18\right)}
43300 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{10±10\sqrt{433}}{2\left(-18\right)}
-10 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 10 ਹੈ।
x=\frac{10±10\sqrt{433}}{-36}
2 ਨੂੰ -18 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{10\sqrt{433}+10}{-36}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{10±10\sqrt{433}}{-36} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 10 ਨੂੰ 10\sqrt{433} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-5\sqrt{433}-5}{18}
10+10\sqrt{433} ਨੂੰ -36 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{10-10\sqrt{433}}{-36}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{10±10\sqrt{433}}{-36} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 10 ਵਿੱਚੋਂ 10\sqrt{433} ਨੂੰ ਘਟਾਓ।
x=\frac{5\sqrt{433}-5}{18}
10-10\sqrt{433} ਨੂੰ -36 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-5\sqrt{433}-5}{18} x=\frac{5\sqrt{433}-5}{18}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
4x^{2}+\left(x-5\right)\left(2x-24x-120\right)=0
ਵੇਰੀਏਬਲ x, 5 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-5\right)^{2}, ਜੋ x^{2}+25-10x,x-5 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
4x^{2}+\left(x-5\right)\left(-22x-120\right)=0
-22x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x ਅਤੇ -24x ਨੂੰ ਮਿਲਾਓ।
4x^{2}-22x^{2}-10x+600=0
x-5 ਨੂੰ -22x-120 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
-18x^{2}-10x+600=0
-18x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x^{2} ਅਤੇ -22x^{2} ਨੂੰ ਮਿਲਾਓ।
-18x^{2}-10x=-600
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 600 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
\frac{-18x^{2}-10x}{-18}=-\frac{600}{-18}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -18 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{10}{-18}\right)x=-\frac{600}{-18}
-18 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -18 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{5}{9}x=-\frac{600}{-18}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-10}{-18} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{5}{9}x=\frac{100}{3}
6 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-600}{-18} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{5}{9}x+\left(\frac{5}{18}\right)^{2}=\frac{100}{3}+\left(\frac{5}{18}\right)^{2}
\frac{5}{9}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{5}{18} ਨਿਕਲੇ। ਫੇਰ, \frac{5}{18} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{5}{9}x+\frac{25}{324}=\frac{100}{3}+\frac{25}{324}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{5}{18} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{5}{9}x+\frac{25}{324}=\frac{10825}{324}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{100}{3} ਨੂੰ \frac{25}{324} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{5}{18}\right)^{2}=\frac{10825}{324}
ਫੈਕਟਰ x^{2}+\frac{5}{9}x+\frac{25}{324}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{5}{18}\right)^{2}}=\sqrt{\frac{10825}{324}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{5}{18}=\frac{5\sqrt{433}}{18} x+\frac{5}{18}=-\frac{5\sqrt{433}}{18}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{5\sqrt{433}-5}{18} x=\frac{-5\sqrt{433}-5}{18}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{5}{18} ਨੂੰ ਘਟਾਓ।