ਮੁਲਾਂਕਣ ਕਰੋ
\frac{3}{5}+\frac{1}{5}i=0.6+0.2i
ਵਾਸਤਵਿਕ ਭਾਗ
\frac{3}{5} = 0.6
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{4i\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}+\frac{1-i}{1+2i}+\frac{12}{5}
\frac{4i}{1-2i} ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਨੂੰ, ਡੀਨੋਮਿਨੇਟਰ 1+2i ਦੇ ਕੋਮਪਲੈਕਸ ਕੰਜੂਗੇਟ (ਸੰਯੁਜਮੀ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\frac{-8+4i}{5}+\frac{1-i}{1+2i}+\frac{12}{5}
\frac{4i\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)} ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
-\frac{8}{5}+\frac{4}{5}i+\frac{1-i}{1+2i}+\frac{12}{5}
-8+4i ਨੂੰ 5 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{8}{5}+\frac{4}{5}i ਨਿਕਲੇ।
\frac{1-i}{1+2i}+\frac{4}{5}+\frac{4}{5}i
ਜੋੜ ਪੂਰੇ ਕਰੋ।
\frac{\left(1-i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}+\frac{4}{5}+\frac{4}{5}i
\frac{1-i}{1+2i} ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਨੂੰ, ਡੀਨੋਮਿਨੇਟਰ 1-2i ਦੇ ਕੋਮਪਲੈਕਸ ਕੰਜੂਗੇਟ (ਸੰਯੁਜਮੀ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\frac{-1-3i}{5}+\frac{4}{5}+\frac{4}{5}i
\frac{\left(1-i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)} ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
-\frac{1}{5}-\frac{3}{5}i+\frac{4}{5}+\frac{4}{5}i
-1-3i ਨੂੰ 5 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{1}{5}-\frac{3}{5}i ਨਿਕਲੇ।
\frac{3}{5}+\frac{1}{5}i
ਜੋੜ ਪੂਰੇ ਕਰੋ।
Re(\frac{4i\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}+\frac{1-i}{1+2i}+\frac{12}{5})
\frac{4i}{1-2i} ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਨੂੰ, ਡੀਨੋਮਿਨੇਟਰ 1+2i ਦੇ ਕੋਮਪਲੈਕਸ ਕੰਜੂਗੇਟ (ਸੰਯੁਜਮੀ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
Re(\frac{-8+4i}{5}+\frac{1-i}{1+2i}+\frac{12}{5})
\frac{4i\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)} ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
Re(-\frac{8}{5}+\frac{4}{5}i+\frac{1-i}{1+2i}+\frac{12}{5})
-8+4i ਨੂੰ 5 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{8}{5}+\frac{4}{5}i ਨਿਕਲੇ।
Re(\frac{1-i}{1+2i}+\frac{4}{5}+\frac{4}{5}i)
-\frac{8}{5}+\frac{4}{5}i+\frac{12}{5} ਵਿੱਚ ਜੋੜ ਕਰੋ।
Re(\frac{\left(1-i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}+\frac{4}{5}+\frac{4}{5}i)
\frac{1-i}{1+2i} ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਨੂੰ, ਡੀਨੋਮਿਨੇਟਰ 1-2i ਦੇ ਕੋਮਪਲੈਕਸ ਕੰਜੂਗੇਟ (ਸੰਯੁਜਮੀ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
Re(\frac{-1-3i}{5}+\frac{4}{5}+\frac{4}{5}i)
\frac{\left(1-i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)} ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
Re(-\frac{1}{5}-\frac{3}{5}i+\frac{4}{5}+\frac{4}{5}i)
-1-3i ਨੂੰ 5 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{1}{5}-\frac{3}{5}i ਨਿਕਲੇ।
Re(\frac{3}{5}+\frac{1}{5}i)
-\frac{1}{5}-\frac{3}{5}i+\frac{4}{5}+\frac{4}{5}i ਵਿੱਚ ਜੋੜ ਕਰੋ।
\frac{3}{5}
\frac{3}{5}+\frac{1}{5}i ਦਾ ਅਸਲੀ ਹਿੱਸਾ \frac{3}{5} ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}