x ਲਈ ਹਲ ਕਰੋ
x\leq \frac{13}{5}
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
2\times 4\left(1+x\right)-6\leq 3\left(5+x\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6, ਜੋ 3,2 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ। ਕਿਉਂਕਿ 6 ਧਨਾਤਮਕ ਹੈ, ਇਸ ਲਈ ਅਸਮਾਨਤਾ ਦਿਸ਼ਾ ਓਵੇਂ ਹੀ ਰਹਿੰਦੀ ਹੈ।
8\left(1+x\right)-6\leq 3\left(5+x\right)
8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 4 ਨੂੰ ਗੁਣਾ ਕਰੋ।
8+8x-6\leq 3\left(5+x\right)
8 ਨੂੰ 1+x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2+8x\leq 3\left(5+x\right)
2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 8 ਵਿੱਚੋਂ 6 ਨੂੰ ਘਟਾ ਦਿਓ।
2+8x\leq 15+3x
3 ਨੂੰ 5+x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2+8x-3x\leq 15
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3x ਨੂੰ ਘਟਾ ਦਿਓ।
2+5x\leq 15
5x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 8x ਅਤੇ -3x ਨੂੰ ਮਿਲਾਓ।
5x\leq 15-2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
5x\leq 13
13 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 15 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
x\leq \frac{13}{5}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 5 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ। ਕਿਉਂਕਿ 5 ਧਨਾਤਮਕ ਹੈ, ਇਸ ਲਈ ਅਸਮਾਨਤਾ ਦਿਸ਼ਾ ਓਵੇਂ ਹੀ ਰਹਿੰਦੀ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}