ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
y ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

4-\left(3y-1\right)\times 4=\left(-1-3y\right)\times 5
ਵੇਰੀਏਬਲ y ਕਿਸੇ ਵੀ ਇੱਕ -\frac{1}{3},\frac{1}{3} ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(3y-1\right)\left(3y+1\right), ਜੋ 9y^{2}-1,3y+1,1-3y ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
4-\left(12y-4\right)=\left(-1-3y\right)\times 5
3y-1 ਨੂੰ 4 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
4-12y+4=\left(-1-3y\right)\times 5
12y-4 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
8-12y=\left(-1-3y\right)\times 5
8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 4 ਨੂੰ ਜੋੜੋ।
8-12y=-5-15y
-1-3y ਨੂੰ 5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
8-12y+15y=-5
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 15y ਜੋੜੋ।
8+3y=-5
3y ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -12y ਅਤੇ 15y ਨੂੰ ਮਿਲਾਓ।
3y=-5-8
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ।
3y=-13
-13 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -5 ਵਿੱਚੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ।
y=\frac{-13}{3}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
y=-\frac{13}{3}
ਨੈਗੇਟਿਵ ਚਿੰਨ੍ਹ ਨੂੰ ਬਾਹਰ ਕੱਢ ਕੇ, ਅੰਕ \frac{-13}{3} ਨੂੰ -\frac{13}{3} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।