ਮੁਲਾਂਕਣ ਕਰੋ
\frac{42}{11}\approx 3.818181818
ਫੈਕਟਰ
\frac{2 \cdot 3 \cdot 7}{11} = 3\frac{9}{11} = 3.8181818181818183
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{\left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right)}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ 4+\sqrt{5} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{4+\sqrt{5}}{4-\sqrt{5}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{4^{2}-\left(\sqrt{5}\right)^{2}}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
\left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{16-5}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
4 ਦਾ ਵਰਗ ਕਰੋ। \sqrt{5} ਦਾ ਵਰਗ ਕਰੋ।
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
11 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 16 ਵਿੱਚੋਂ 5 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{\left(4+\sqrt{5}\right)^{2}}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
\left(4+\sqrt{5}\right)^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4+\sqrt{5} ਅਤੇ 4+\sqrt{5} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{16+8\sqrt{5}+\left(\sqrt{5}\right)^{2}}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
\left(4+\sqrt{5}\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
\frac{16+8\sqrt{5}+5}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
\sqrt{5} ਦਾ ਸਕ੍ਵੇਅਰ 5 ਹੈ।
\frac{21+8\sqrt{5}}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
21 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 16 ਅਤੇ 5 ਨੂੰ ਜੋੜੋ।
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right)}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ 4-\sqrt{5} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{4-\sqrt{5}}{4+\sqrt{5}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{4^{2}-\left(\sqrt{5}\right)^{2}}
\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{16-5}
4 ਦਾ ਵਰਗ ਕਰੋ। \sqrt{5} ਦਾ ਵਰਗ ਕਰੋ।
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{11}
11 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 16 ਵਿੱਚੋਂ 5 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)^{2}}{11}
\left(4-\sqrt{5}\right)^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4-\sqrt{5} ਅਤੇ 4-\sqrt{5} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{21+8\sqrt{5}}{11}+\frac{16-8\sqrt{5}+\left(\sqrt{5}\right)^{2}}{11}
\left(4-\sqrt{5}\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
\frac{21+8\sqrt{5}}{11}+\frac{16-8\sqrt{5}+5}{11}
\sqrt{5} ਦਾ ਸਕ੍ਵੇਅਰ 5 ਹੈ।
\frac{21+8\sqrt{5}}{11}+\frac{21-8\sqrt{5}}{11}
21 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 16 ਅਤੇ 5 ਨੂੰ ਜੋੜੋ।
\frac{21+8\sqrt{5}+21-8\sqrt{5}}{11}
ਕਿਉਂਕਿ \frac{21+8\sqrt{5}}{11} ਅਤੇ \frac{21-8\sqrt{5}}{11} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{42}{11}
21+8\sqrt{5}+21-8\sqrt{5} ਵਿੱਚ ਗਿਣਤੀ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}