ਮੁਲਾਂਕਣ ਕਰੋ
15\sqrt{5}+19\sqrt{2}\approx 60.411077348
ਫੈਕਟਰ
15 \sqrt{5} + 19 \sqrt{2} = 60.411077348
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{\left(2\sqrt{10}-3\right)\left(2\sqrt{10}+3\right)}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ 2\sqrt{10}+3 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{31\sqrt{2}+31\sqrt{5}}{2\sqrt{10}-3} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{\left(2\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
\left(2\sqrt{10}-3\right)\left(2\sqrt{10}+3\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{2^{2}\left(\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
\left(2\sqrt{10}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{4\left(\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
2 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 4 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{4\times 10-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
\sqrt{10} ਦਾ ਸਕ੍ਵੇਅਰ 10 ਹੈ।
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{40-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
40 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 10 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{40-9}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
3 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 9 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
31 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 40 ਵਿੱਚੋਂ 9 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{\left(3-2\sqrt{10}\right)\left(3+2\sqrt{10}\right)}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ 3+2\sqrt{10} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{62\sqrt{2}}{3-2\sqrt{10}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{3^{2}-\left(-2\sqrt{10}\right)^{2}}
\left(3-2\sqrt{10}\right)\left(3+2\sqrt{10}\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-\left(-2\sqrt{10}\right)^{2}}
3 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 9 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-\left(-2\right)^{2}\left(\sqrt{10}\right)^{2}}
\left(-2\sqrt{10}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-4\left(\sqrt{10}\right)^{2}}
-2 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 4 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-4\times 10}
\sqrt{10} ਦਾ ਸਕ੍ਵੇਅਰ 10 ਹੈ।
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-40}
40 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 10 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{-31}
-31 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9 ਵਿੱਚੋਂ 40 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\left(-2\sqrt{2}\left(3+2\sqrt{10}\right)\right)
62\sqrt{2}\left(3+2\sqrt{10}\right) ਨੂੰ -31 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -2\sqrt{2}\left(3+2\sqrt{10}\right) ਨਿਕਲੇ।
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
-2\sqrt{2}\left(3+2\sqrt{10}\right) ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 2\sqrt{2}\left(3+2\sqrt{10}\right) ਹੈ।
\frac{62\sqrt{10}\sqrt{2}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
31\sqrt{2}+31\sqrt{5} ਦੇ ਹਰ ਸ਼ਬਦ ਨੂੰ 2\sqrt{10}+3 ਦੇ ਹਰ ਸ਼ਬਦ ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ ਵਿਤਰਣ ਗੁਣ ਨੂੰ ਲਾਗੂ ਕਰੋ।
\frac{62\sqrt{2}\sqrt{5}\sqrt{2}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
10=2\times 5 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{2\times 5} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{2}\sqrt{5} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
\frac{62\times 2\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \sqrt{2} ਅਤੇ \sqrt{2} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{124\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
124 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 62 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{124\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{5}\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
10=5\times 2 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{5\times 2} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{5}\sqrt{2} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
\frac{124\sqrt{5}+93\sqrt{2}+62\times 5\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \sqrt{5} ਅਤੇ \sqrt{5} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{124\sqrt{5}+93\sqrt{2}+310\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
310 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 62 ਅਤੇ 5 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{124\sqrt{5}+403\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
403\sqrt{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 93\sqrt{2} ਅਤੇ 310\sqrt{2} ਨੂੰ ਮਿਲਾਓ।
\frac{217\sqrt{5}+403\sqrt{2}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
217\sqrt{5} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 124\sqrt{5} ਅਤੇ 93\sqrt{5} ਨੂੰ ਮਿਲਾਓ।
7\sqrt{5}+13\sqrt{2}+2\sqrt{2}\left(3+2\sqrt{10}\right)
217\sqrt{5}+403\sqrt{2} ਦੇ ਹਰ ਅੰਕ ਨੂੰ 31 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 7\sqrt{5}+13\sqrt{2} ਨਿਕਲੇ।
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\sqrt{10}\sqrt{2}
2\sqrt{2} ਨੂੰ 3+2\sqrt{10} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\sqrt{2}\sqrt{5}\sqrt{2}
10=2\times 5 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{2\times 5} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{2}\sqrt{5} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\times 2\sqrt{5}
2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \sqrt{2} ਅਤੇ \sqrt{2} ਨੂੰ ਗੁਣਾ ਕਰੋ।
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+8\sqrt{5}
8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
7\sqrt{5}+19\sqrt{2}+8\sqrt{5}
19\sqrt{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 13\sqrt{2} ਅਤੇ 6\sqrt{2} ਨੂੰ ਮਿਲਾਓ।
15\sqrt{5}+19\sqrt{2}
15\sqrt{5} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 7\sqrt{5} ਅਤੇ 8\sqrt{5} ਨੂੰ ਮਿਲਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}