ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
n ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\left(2n-200\right)\times 300=\left(n-300\right)\left(n+200\right)
ਵੇਰੀਏਬਲ n ਕਿਸੇ ਵੀ ਇੱਕ 100,300 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2\left(n-300\right)\left(n-100\right), ਜੋ n-300,n+n-200 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
600n-60000=\left(n-300\right)\left(n+200\right)
2n-200 ਨੂੰ 300 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
600n-60000=n^{2}-100n-60000
n-300 ਨੂੰ n+200 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
600n-60000-n^{2}=-100n-60000
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ n^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
600n-60000-n^{2}+100n=-60000
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 100n ਜੋੜੋ।
700n-60000-n^{2}=-60000
700n ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 600n ਅਤੇ 100n ਨੂੰ ਮਿਲਾਓ।
700n-60000-n^{2}+60000=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 60000 ਜੋੜੋ।
700n-n^{2}=0
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -60000 ਅਤੇ 60000 ਨੂੰ ਜੋੜੋ।
-n^{2}+700n=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
n=\frac{-700±\sqrt{700^{2}}}{2\left(-1\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -1 ਨੂੰ a ਲਈ, 700 ਨੂੰ b ਲਈ, ਅਤੇ 0 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
n=\frac{-700±700}{2\left(-1\right)}
700^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
n=\frac{-700±700}{-2}
2 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
n=\frac{0}{-2}
ਹੁਣ, ਸਮੀਕਰਨ n=\frac{-700±700}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -700 ਨੂੰ 700 ਵਿੱਚ ਜੋੜੋ।
n=0
0 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
n=-\frac{1400}{-2}
ਹੁਣ, ਸਮੀਕਰਨ n=\frac{-700±700}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -700 ਵਿੱਚੋਂ 700 ਨੂੰ ਘਟਾਓ।
n=700
-1400 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
n=0 n=700
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\left(2n-200\right)\times 300=\left(n-300\right)\left(n+200\right)
ਵੇਰੀਏਬਲ n ਕਿਸੇ ਵੀ ਇੱਕ 100,300 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2\left(n-300\right)\left(n-100\right), ਜੋ n-300,n+n-200 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
600n-60000=\left(n-300\right)\left(n+200\right)
2n-200 ਨੂੰ 300 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
600n-60000=n^{2}-100n-60000
n-300 ਨੂੰ n+200 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
600n-60000-n^{2}=-100n-60000
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ n^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
600n-60000-n^{2}+100n=-60000
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 100n ਜੋੜੋ।
700n-60000-n^{2}=-60000
700n ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 600n ਅਤੇ 100n ਨੂੰ ਮਿਲਾਓ।
700n-n^{2}=-60000+60000
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 60000 ਜੋੜੋ।
700n-n^{2}=0
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -60000 ਅਤੇ 60000 ਨੂੰ ਜੋੜੋ।
-n^{2}+700n=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-n^{2}+700n}{-1}=\frac{0}{-1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
n^{2}+\frac{700}{-1}n=\frac{0}{-1}
-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
n^{2}-700n=\frac{0}{-1}
700 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
n^{2}-700n=0
0 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
n^{2}-700n+\left(-350\right)^{2}=\left(-350\right)^{2}
-700, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -350 ਨਿਕਲੇ। ਫੇਰ, -350 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
n^{2}-700n+122500=122500
-350 ਦਾ ਵਰਗ ਕਰੋ।
\left(n-350\right)^{2}=122500
ਫੈਕਟਰ n^{2}-700n+122500। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(n-350\right)^{2}}=\sqrt{122500}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
n-350=350 n-350=-350
ਸਪਸ਼ਟ ਕਰੋ।
n=700 n=0
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 350 ਨੂੰ ਜੋੜੋ।