x ਲਈ ਹਲ ਕਰੋ
x=4
x = \frac{11}{2} = 5\frac{1}{2} = 5.5
ਗ੍ਰਾਫ
ਕੁਇਜ਼
Quadratic Equation
5 ਪ੍ਰਸ਼ਨ ਇਸ ਵਰਗੇ ਹਨ:
\frac { 3 x - 8 } { x - 2 } = \frac { 5 x - 2 } { x + 5 }
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(x+5\right)\left(3x-8\right)=\left(x-2\right)\left(5x-2\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -5,2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-2\right)\left(x+5\right), ਜੋ x-2,x+5 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
3x^{2}+7x-40=\left(x-2\right)\left(5x-2\right)
x+5 ਨੂੰ 3x-8 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
3x^{2}+7x-40=5x^{2}-12x+4
x-2 ਨੂੰ 5x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
3x^{2}+7x-40-5x^{2}=-12x+4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-2x^{2}+7x-40=-12x+4
-2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3x^{2} ਅਤੇ -5x^{2} ਨੂੰ ਮਿਲਾਓ।
-2x^{2}+7x-40+12x=4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 12x ਜੋੜੋ।
-2x^{2}+19x-40=4
19x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 7x ਅਤੇ 12x ਨੂੰ ਮਿਲਾਓ।
-2x^{2}+19x-40-4=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
-2x^{2}+19x-44=0
-44 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -40 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{-19±\sqrt{19^{2}-4\left(-2\right)\left(-44\right)}}{2\left(-2\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -2 ਨੂੰ a ਲਈ, 19 ਨੂੰ b ਲਈ, ਅਤੇ -44 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-19±\sqrt{361-4\left(-2\right)\left(-44\right)}}{2\left(-2\right)}
19 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-19±\sqrt{361+8\left(-44\right)}}{2\left(-2\right)}
-4 ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-19±\sqrt{361-352}}{2\left(-2\right)}
8 ਨੂੰ -44 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-19±\sqrt{9}}{2\left(-2\right)}
361 ਨੂੰ -352 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-19±3}{2\left(-2\right)}
9 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-19±3}{-4}
2 ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=-\frac{16}{-4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-19±3}{-4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -19 ਨੂੰ 3 ਵਿੱਚ ਜੋੜੋ।
x=4
-16 ਨੂੰ -4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{22}{-4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-19±3}{-4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -19 ਵਿੱਚੋਂ 3 ਨੂੰ ਘਟਾਓ।
x=\frac{11}{2}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-22}{-4} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=4 x=\frac{11}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\left(x+5\right)\left(3x-8\right)=\left(x-2\right)\left(5x-2\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -5,2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-2\right)\left(x+5\right), ਜੋ x-2,x+5 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
3x^{2}+7x-40=\left(x-2\right)\left(5x-2\right)
x+5 ਨੂੰ 3x-8 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
3x^{2}+7x-40=5x^{2}-12x+4
x-2 ਨੂੰ 5x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
3x^{2}+7x-40-5x^{2}=-12x+4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-2x^{2}+7x-40=-12x+4
-2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3x^{2} ਅਤੇ -5x^{2} ਨੂੰ ਮਿਲਾਓ।
-2x^{2}+7x-40+12x=4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 12x ਜੋੜੋ।
-2x^{2}+19x-40=4
19x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 7x ਅਤੇ 12x ਨੂੰ ਮਿਲਾਓ।
-2x^{2}+19x=4+40
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 40 ਜੋੜੋ।
-2x^{2}+19x=44
44 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 40 ਨੂੰ ਜੋੜੋ।
\frac{-2x^{2}+19x}{-2}=\frac{44}{-2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{19}{-2}x=\frac{44}{-2}
-2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{19}{2}x=\frac{44}{-2}
19 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-\frac{19}{2}x=-22
44 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-\frac{19}{2}x+\left(-\frac{19}{4}\right)^{2}=-22+\left(-\frac{19}{4}\right)^{2}
-\frac{19}{2}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{19}{4} ਨਿਕਲੇ। ਫੇਰ, -\frac{19}{4} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{19}{2}x+\frac{361}{16}=-22+\frac{361}{16}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{19}{4} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{19}{2}x+\frac{361}{16}=\frac{9}{16}
-22 ਨੂੰ \frac{361}{16} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{19}{4}\right)^{2}=\frac{9}{16}
ਫੈਕਟਰ x^{2}-\frac{19}{2}x+\frac{361}{16}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{19}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{19}{4}=\frac{3}{4} x-\frac{19}{4}=-\frac{3}{4}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{11}{2} x=4
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{19}{4} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}