x ਲਈ ਹਲ ਕਰੋ
x=\frac{7y}{24}
y ਲਈ ਹਲ ਕਰੋ
y=\frac{24x}{7}
ਗ੍ਰਾਫ
ਕੁਇਜ਼
Linear Equation
5 ਪ੍ਰਸ਼ਨ ਇਸ ਵਰਗੇ ਹਨ:
\frac { 3 x } { 7 } - x = \frac { y } { 6 } - \frac { y } { 3 }
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
6\times 3x-42x=7y-14y
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 42, ਜੋ 7,6,3 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
18x-42x=7y-14y
18 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
-24x=7y-14y
-24x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 18x ਅਤੇ -42x ਨੂੰ ਮਿਲਾਓ।
-24x=-7y
-7y ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 7y ਅਤੇ -14y ਨੂੰ ਮਿਲਾਓ।
\frac{-24x}{-24}=-\frac{7y}{-24}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -24 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=-\frac{7y}{-24}
-24 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -24 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x=\frac{7y}{24}
-7y ਨੂੰ -24 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
6\times 3x-42x=7y-14y
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 42, ਜੋ 7,6,3 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
18x-42x=7y-14y
18 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
-24x=7y-14y
-24x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 18x ਅਤੇ -42x ਨੂੰ ਮਿਲਾਓ।
-24x=-7y
-7y ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 7y ਅਤੇ -14y ਨੂੰ ਮਿਲਾਓ।
-7y=-24x
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
\frac{-7y}{-7}=-\frac{24x}{-7}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -7 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
y=-\frac{24x}{-7}
-7 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -7 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
y=\frac{24x}{7}
-24x ਨੂੰ -7 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}