ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

-\left(3x+2\right)=\left(x-3\right)\left(5x+1\right)+3+x
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -3,3 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-3\right)\left(x+3\right), ਜੋ 9-x^{2},x+3,3-x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
-3x-2=\left(x-3\right)\left(5x+1\right)+3+x
3x+2 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-3x-2=5x^{2}-14x-3+3+x
x-3 ਨੂੰ 5x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
-3x-2=5x^{2}-14x+x
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -3 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
-3x-2=5x^{2}-13x
-13x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -14x ਅਤੇ x ਨੂੰ ਮਿਲਾਓ।
-3x-2-5x^{2}=-13x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-3x-2-5x^{2}+13x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 13x ਜੋੜੋ।
10x-2-5x^{2}=0
10x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -3x ਅਤੇ 13x ਨੂੰ ਮਿਲਾਓ।
-5x^{2}+10x-2=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-10±\sqrt{10^{2}-4\left(-5\right)\left(-2\right)}}{2\left(-5\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -5 ਨੂੰ a ਲਈ, 10 ਨੂੰ b ਲਈ, ਅਤੇ -2 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-10±\sqrt{100-4\left(-5\right)\left(-2\right)}}{2\left(-5\right)}
10 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-10±\sqrt{100+20\left(-2\right)}}{2\left(-5\right)}
-4 ਨੂੰ -5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-10±\sqrt{100-40}}{2\left(-5\right)}
20 ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-10±\sqrt{60}}{2\left(-5\right)}
100 ਨੂੰ -40 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-10±2\sqrt{15}}{2\left(-5\right)}
60 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-10±2\sqrt{15}}{-10}
2 ਨੂੰ -5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{2\sqrt{15}-10}{-10}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-10±2\sqrt{15}}{-10} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -10 ਨੂੰ 2\sqrt{15} ਵਿੱਚ ਜੋੜੋ।
x=-\frac{\sqrt{15}}{5}+1
-10+2\sqrt{15} ਨੂੰ -10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-2\sqrt{15}-10}{-10}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-10±2\sqrt{15}}{-10} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -10 ਵਿੱਚੋਂ 2\sqrt{15} ਨੂੰ ਘਟਾਓ।
x=\frac{\sqrt{15}}{5}+1
-10-2\sqrt{15} ਨੂੰ -10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{\sqrt{15}}{5}+1 x=\frac{\sqrt{15}}{5}+1
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
-\left(3x+2\right)=\left(x-3\right)\left(5x+1\right)+3+x
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -3,3 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-3\right)\left(x+3\right), ਜੋ 9-x^{2},x+3,3-x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
-3x-2=\left(x-3\right)\left(5x+1\right)+3+x
3x+2 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-3x-2=5x^{2}-14x-3+3+x
x-3 ਨੂੰ 5x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
-3x-2=5x^{2}-14x+x
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -3 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
-3x-2=5x^{2}-13x
-13x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -14x ਅਤੇ x ਨੂੰ ਮਿਲਾਓ।
-3x-2-5x^{2}=-13x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-3x-2-5x^{2}+13x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 13x ਜੋੜੋ।
10x-2-5x^{2}=0
10x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -3x ਅਤੇ 13x ਨੂੰ ਮਿਲਾਓ।
10x-5x^{2}=2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2 ਜੋੜੋ। ਸਿਫਰ ਵਿੱਚ ਜੋੜੀ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
-5x^{2}+10x=2
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-5x^{2}+10x}{-5}=\frac{2}{-5}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -5 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{10}{-5}x=\frac{2}{-5}
-5 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -5 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-2x=\frac{2}{-5}
10 ਨੂੰ -5 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-2x=-\frac{2}{5}
2 ਨੂੰ -5 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-2x+1=-\frac{2}{5}+1
-2, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -1 ਨਿਕਲੇ। ਫੇਰ, -1 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-2x+1=\frac{3}{5}
-\frac{2}{5} ਨੂੰ 1 ਵਿੱਚ ਜੋੜੋ।
\left(x-1\right)^{2}=\frac{3}{5}
ਫੈਕਟਰ x^{2}-2x+1। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{3}{5}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-1=\frac{\sqrt{15}}{5} x-1=-\frac{\sqrt{15}}{5}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{15}}{5}+1 x=-\frac{\sqrt{15}}{5}+1
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 1 ਨੂੰ ਜੋੜੋ।