ਮੁਲਾਂਕਣ ਕਰੋ
\frac{x+7}{\left(x-2\right)\left(x+1\right)}
ਅੰਤਰ ਦੱਸੋ w.r.t. x
\frac{5-14x-x^{2}}{x^{4}-2x^{3}-3x^{2}+4x+4}
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। x-2 ਅਤੇ x+1 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(x-2\right)\left(x+1\right) ਹੈ। \frac{3}{x-2} ਨੂੰ \frac{x+1}{x+1} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{2}{x+1} ਨੂੰ \frac{x-2}{x-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{3\left(x+1\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
ਕਿਉਂਕਿ \frac{3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} ਅਤੇ \frac{2\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{3x+3-2x+4}{\left(x-2\right)\left(x+1\right)}
3\left(x+1\right)-2\left(x-2\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{x+7}{\left(x-2\right)\left(x+1\right)}
3x+3-2x+4 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{x+7}{x^{2}-x-2}
\left(x-2\right)\left(x+1\right) ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। x-2 ਅਤੇ x+1 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(x-2\right)\left(x+1\right) ਹੈ। \frac{3}{x-2} ਨੂੰ \frac{x+1}{x+1} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{2}{x+1} ਨੂੰ \frac{x-2}{x-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+1\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
ਕਿਉਂਕਿ \frac{3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} ਅਤੇ \frac{2\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+3-2x+4}{\left(x-2\right)\left(x+1\right)})
3\left(x+1\right)-2\left(x-2\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{\left(x-2\right)\left(x+1\right)})
3x+3-2x+4 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{x^{2}+x-2x-2})
x-2 ਦੇ ਹਰ ਸ਼ਬਦ ਨੂੰ x+1 ਦੇ ਹਰ ਸ਼ਬਦ ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ ਵਿਤਰਣ ਗੁਣ ਨੂੰ ਲਾਗੂ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{x^{2}-x-2})
-x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ -2x ਨੂੰ ਮਿਲਾਓ।
\frac{\left(x^{2}-x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+7)-\left(x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-2)}{\left(x^{2}-x^{1}-2\right)^{2}}
ਅੰਤਰ ਕੱਢਣ ਯੋਗ ਕਿਸੇ ਦੋ ਫੰਗਸ਼ਨ ਲਈ, ਦੋ ਫੰਗਸ਼ਨਾਂ ਦੇ ਭਾਗਫਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਨਿਉਮਰੇਟਰ ਦੇ ਡੈਰੀਵੇਟਿਵ ਨਾਲ ਗੁਣਾ ਕਰਕੇ, - ਨਿਉਮਰੇਟਰ ਨੂੰ ਡੀਨੋਮਿਨੇਟਰ ਨਾਲ ਗੁਣਾ ਕਰਕੇ, ਸਾਰੇ ਵਰਗ ਵਿੱਚ ਰੱਖੇ ਡੀਨੋਮਿਨੇਟਰ ਨਾਲ ਤਕਸੀਮ ਕਰਕੇ ਨਿਕਲਦਾ ਹੈ।
\frac{\left(x^{2}-x^{1}-2\right)x^{1-1}-\left(x^{1}+7\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਇਸ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਡੈਰੀਵੇਟਿਵਸ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਸਥਿਰ ਸੰਖਿਆ ਦਾ ਡੈਰੀਵੇਟਿਵ 0 ਹੁੰਦਾ ਹੈ। ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
\frac{\left(x^{2}-x^{1}-2\right)x^{0}-\left(x^{1}+7\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
ਸਪਸ਼ਟ ਕਰੋ।
\frac{x^{2}x^{0}-x^{1}x^{0}-2x^{0}-\left(x^{1}+7\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
x^{2}-x^{1}-2 ਨੂੰ x^{0} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{x^{2}x^{0}-x^{1}x^{0}-2x^{0}-\left(x^{1}\times 2x^{1}+x^{1}\left(-1\right)x^{0}+7\times 2x^{1}+7\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
x^{1}+7 ਨੂੰ 2x^{1}-x^{0} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{x^{2}-x^{1}-2x^{0}-\left(2x^{1+1}-x^{1}+7\times 2x^{1}+7\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ।
\frac{x^{2}-x^{1}-2x^{0}-\left(2x^{2}-x^{1}+14x^{1}-7x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
ਸਪਸ਼ਟ ਕਰੋ।
\frac{-x^{2}-14x^{1}+5x^{0}}{\left(x^{2}-x^{1}-2\right)^{2}}
ਇੱਕ-ਸਮਾਨ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\frac{-x^{2}-14x+5x^{0}}{\left(x^{2}-x-2\right)^{2}}
ਕਿਸੇ t, t^{1}=t ਸੰਖਿਆ ਲਈ।
\frac{-x^{2}-14x+5\times 1}{\left(x^{2}-x-2\right)^{2}}
ਕਿਸੇ ਵੀ t ਸੰਖਿਆ ਲਈ, 0, t^{0}=1 ਨੂੰ ਛੱਡ ਕੇ।
\frac{-x^{2}-14x+5}{\left(x^{2}-x-2\right)^{2}}
ਕਿਸੇ ਸੰਖਿਆ t, t\times 1=t ਅਤੇ 1t=t ਲਈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}