ਮੁਲਾਂਕਣ ਕਰੋ
\frac{25}{121}\approx 0.20661157
ਫੈਕਟਰ
\frac{5 ^ {2}}{11 ^ {2}} = 0.2066115702479339
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{3}{22}\left(\frac{198}{99}-\frac{16}{99}\right)\times \frac{3}{2}-\frac{\frac{1}{3}}{\left(\frac{11}{6}\right)^{2}}-\frac{17}{11}\times \frac{1}{22}
2 ਨੂੰ \frac{198}{99} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
\frac{3}{22}\times \frac{198-16}{99}\times \frac{3}{2}-\frac{\frac{1}{3}}{\left(\frac{11}{6}\right)^{2}}-\frac{17}{11}\times \frac{1}{22}
ਕਿਉਂਕਿ \frac{198}{99} ਅਤੇ \frac{16}{99} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{3}{22}\times \frac{182}{99}\times \frac{3}{2}-\frac{\frac{1}{3}}{\left(\frac{11}{6}\right)^{2}}-\frac{17}{11}\times \frac{1}{22}
182 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 198 ਵਿੱਚੋਂ 16 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{3\times 182}{22\times 99}\times \frac{3}{2}-\frac{\frac{1}{3}}{\left(\frac{11}{6}\right)^{2}}-\frac{17}{11}\times \frac{1}{22}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{3}{22} ਟਾਈਮਸ \frac{182}{99} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{546}{2178}\times \frac{3}{2}-\frac{\frac{1}{3}}{\left(\frac{11}{6}\right)^{2}}-\frac{17}{11}\times \frac{1}{22}
\frac{3\times 182}{22\times 99} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{91}{363}\times \frac{3}{2}-\frac{\frac{1}{3}}{\left(\frac{11}{6}\right)^{2}}-\frac{17}{11}\times \frac{1}{22}
6 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{546}{2178} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{91\times 3}{363\times 2}-\frac{\frac{1}{3}}{\left(\frac{11}{6}\right)^{2}}-\frac{17}{11}\times \frac{1}{22}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{91}{363} ਟਾਈਮਸ \frac{3}{2} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{273}{726}-\frac{\frac{1}{3}}{\left(\frac{11}{6}\right)^{2}}-\frac{17}{11}\times \frac{1}{22}
\frac{91\times 3}{363\times 2} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{91}{242}-\frac{\frac{1}{3}}{\left(\frac{11}{6}\right)^{2}}-\frac{17}{11}\times \frac{1}{22}
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{273}{726} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{91}{242}-\frac{\frac{1}{3}}{\frac{121}{36}}-\frac{17}{11}\times \frac{1}{22}
\frac{11}{6} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ \frac{121}{36} ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{91}{242}-\frac{1}{3}\times \frac{36}{121}-\frac{17}{11}\times \frac{1}{22}
\frac{1}{3} ਨੂੰ \frac{121}{36} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{1}{3}ਨੂੰ \frac{121}{36} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{91}{242}-\frac{1\times 36}{3\times 121}-\frac{17}{11}\times \frac{1}{22}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{1}{3} ਟਾਈਮਸ \frac{36}{121} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{91}{242}-\frac{36}{363}-\frac{17}{11}\times \frac{1}{22}
\frac{1\times 36}{3\times 121} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{91}{242}-\frac{12}{121}-\frac{17}{11}\times \frac{1}{22}
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{36}{363} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{91}{242}-\frac{24}{242}-\frac{17}{11}\times \frac{1}{22}
242 ਅਤੇ 121 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 242 ਹੈ। \frac{91}{242} ਅਤੇ \frac{12}{121} ਨੂੰ 242 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{91-24}{242}-\frac{17}{11}\times \frac{1}{22}
ਕਿਉਂਕਿ \frac{91}{242} ਅਤੇ \frac{24}{242} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{67}{242}-\frac{17}{11}\times \frac{1}{22}
67 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 91 ਵਿੱਚੋਂ 24 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{67}{242}-\frac{17\times 1}{11\times 22}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{17}{11} ਟਾਈਮਸ \frac{1}{22} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{67}{242}-\frac{17}{242}
\frac{17\times 1}{11\times 22} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{67-17}{242}
ਕਿਉਂਕਿ \frac{67}{242} ਅਤੇ \frac{17}{242} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{50}{242}
50 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 67 ਵਿੱਚੋਂ 17 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{25}{121}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{50}{242} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}