x ਲਈ ਹਲ ਕਰੋ
x=1
x=\frac{3}{8}=0.375
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(3x-1\right)\times 3-\left(1-2x\right)\times 2=4\left(2x-1\right)\left(3x-1\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ \frac{1}{3},\frac{1}{2} ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(2x-1\right)\left(3x-1\right), ਜੋ 2x-1,1-3x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
9x-3-\left(1-2x\right)\times 2=4\left(2x-1\right)\left(3x-1\right)
3x-1 ਨੂੰ 3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
9x-3-\left(2-4x\right)=4\left(2x-1\right)\left(3x-1\right)
1-2x ਨੂੰ 2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
9x-3-2+4x=4\left(2x-1\right)\left(3x-1\right)
2-4x ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
9x-5+4x=4\left(2x-1\right)\left(3x-1\right)
-5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -3 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
13x-5=4\left(2x-1\right)\left(3x-1\right)
13x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9x ਅਤੇ 4x ਨੂੰ ਮਿਲਾਓ।
13x-5=\left(8x-4\right)\left(3x-1\right)
4 ਨੂੰ 2x-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
13x-5=24x^{2}-20x+4
8x-4 ਨੂੰ 3x-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
13x-5-24x^{2}=-20x+4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 24x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
13x-5-24x^{2}+20x=4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 20x ਜੋੜੋ।
33x-5-24x^{2}=4
33x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 13x ਅਤੇ 20x ਨੂੰ ਮਿਲਾਓ।
33x-5-24x^{2}-4=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
33x-9-24x^{2}=0
-9 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -5 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
-24x^{2}+33x-9=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-33±\sqrt{33^{2}-4\left(-24\right)\left(-9\right)}}{2\left(-24\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -24 ਨੂੰ a ਲਈ, 33 ਨੂੰ b ਲਈ, ਅਤੇ -9 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-33±\sqrt{1089-4\left(-24\right)\left(-9\right)}}{2\left(-24\right)}
33 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-33±\sqrt{1089+96\left(-9\right)}}{2\left(-24\right)}
-4 ਨੂੰ -24 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-33±\sqrt{1089-864}}{2\left(-24\right)}
96 ਨੂੰ -9 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-33±\sqrt{225}}{2\left(-24\right)}
1089 ਨੂੰ -864 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-33±15}{2\left(-24\right)}
225 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-33±15}{-48}
2 ਨੂੰ -24 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=-\frac{18}{-48}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-33±15}{-48} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -33 ਨੂੰ 15 ਵਿੱਚ ਜੋੜੋ।
x=\frac{3}{8}
6 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-18}{-48} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=-\frac{48}{-48}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-33±15}{-48} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -33 ਵਿੱਚੋਂ 15 ਨੂੰ ਘਟਾਓ।
x=1
-48 ਨੂੰ -48 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{3}{8} x=1
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\left(3x-1\right)\times 3-\left(1-2x\right)\times 2=4\left(2x-1\right)\left(3x-1\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ \frac{1}{3},\frac{1}{2} ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(2x-1\right)\left(3x-1\right), ਜੋ 2x-1,1-3x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
9x-3-\left(1-2x\right)\times 2=4\left(2x-1\right)\left(3x-1\right)
3x-1 ਨੂੰ 3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
9x-3-\left(2-4x\right)=4\left(2x-1\right)\left(3x-1\right)
1-2x ਨੂੰ 2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
9x-3-2+4x=4\left(2x-1\right)\left(3x-1\right)
2-4x ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
9x-5+4x=4\left(2x-1\right)\left(3x-1\right)
-5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -3 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
13x-5=4\left(2x-1\right)\left(3x-1\right)
13x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9x ਅਤੇ 4x ਨੂੰ ਮਿਲਾਓ।
13x-5=\left(8x-4\right)\left(3x-1\right)
4 ਨੂੰ 2x-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
13x-5=24x^{2}-20x+4
8x-4 ਨੂੰ 3x-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
13x-5-24x^{2}=-20x+4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 24x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
13x-5-24x^{2}+20x=4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 20x ਜੋੜੋ।
33x-5-24x^{2}=4
33x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 13x ਅਤੇ 20x ਨੂੰ ਮਿਲਾਓ।
33x-24x^{2}=4+5
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 5 ਜੋੜੋ।
33x-24x^{2}=9
9 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 5 ਨੂੰ ਜੋੜੋ।
-24x^{2}+33x=9
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-24x^{2}+33x}{-24}=\frac{9}{-24}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -24 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{33}{-24}x=\frac{9}{-24}
-24 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -24 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{11}{8}x=\frac{9}{-24}
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{33}{-24} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}-\frac{11}{8}x=-\frac{3}{8}
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{9}{-24} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}-\frac{11}{8}x+\left(-\frac{11}{16}\right)^{2}=-\frac{3}{8}+\left(-\frac{11}{16}\right)^{2}
-\frac{11}{8}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{11}{16} ਨਿਕਲੇ। ਫੇਰ, -\frac{11}{16} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{11}{8}x+\frac{121}{256}=-\frac{3}{8}+\frac{121}{256}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{11}{16} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{11}{8}x+\frac{121}{256}=\frac{25}{256}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{3}{8} ਨੂੰ \frac{121}{256} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{11}{16}\right)^{2}=\frac{25}{256}
ਫੈਕਟਰ x^{2}-\frac{11}{8}x+\frac{121}{256}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{11}{16}\right)^{2}}=\sqrt{\frac{25}{256}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{11}{16}=\frac{5}{16} x-\frac{11}{16}=-\frac{5}{16}
ਸਪਸ਼ਟ ਕਰੋ।
x=1 x=\frac{3}{8}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{11}{16} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}