ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

-\left(18+x\right)\times 24-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -18,18 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-18\right)\left(x+18\right), ਜੋ 18-x,18+x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(-18-x\right)\times 24-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
18+x ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-432-24x-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
-18-x ਨੂੰ 24 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-432-24x-\left(24x-432\right)=\left(x-18\right)\left(x+18\right)
x-18 ਨੂੰ 24 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-432-24x-24x+432=\left(x-18\right)\left(x+18\right)
24x-432 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-432-48x+432=\left(x-18\right)\left(x+18\right)
-48x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -24x ਅਤੇ -24x ਨੂੰ ਮਿਲਾਓ।
-48x=\left(x-18\right)\left(x+18\right)
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -432 ਅਤੇ 432 ਨੂੰ ਜੋੜੋ।
-48x=x^{2}-324
\left(x-18\right)\left(x+18\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}। 18 ਦਾ ਵਰਗ ਕਰੋ।
-48x-x^{2}=-324
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-48x-x^{2}+324=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 324 ਜੋੜੋ।
-x^{2}-48x+324=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\left(-1\right)\times 324}}{2\left(-1\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -1 ਨੂੰ a ਲਈ, -48 ਨੂੰ b ਲਈ, ਅਤੇ 324 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-48\right)±\sqrt{2304-4\left(-1\right)\times 324}}{2\left(-1\right)}
-48 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-48\right)±\sqrt{2304+4\times 324}}{2\left(-1\right)}
-4 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-48\right)±\sqrt{2304+1296}}{2\left(-1\right)}
4 ਨੂੰ 324 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-48\right)±\sqrt{3600}}{2\left(-1\right)}
2304 ਨੂੰ 1296 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-48\right)±60}{2\left(-1\right)}
3600 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{48±60}{2\left(-1\right)}
-48 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 48 ਹੈ।
x=\frac{48±60}{-2}
2 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{108}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{48±60}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 48 ਨੂੰ 60 ਵਿੱਚ ਜੋੜੋ।
x=-54
108 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{12}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{48±60}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 48 ਵਿੱਚੋਂ 60 ਨੂੰ ਘਟਾਓ।
x=6
-12 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-54 x=6
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
-\left(18+x\right)\times 24-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -18,18 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-18\right)\left(x+18\right), ਜੋ 18-x,18+x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(-18-x\right)\times 24-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
18+x ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-432-24x-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
-18-x ਨੂੰ 24 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-432-24x-\left(24x-432\right)=\left(x-18\right)\left(x+18\right)
x-18 ਨੂੰ 24 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-432-24x-24x+432=\left(x-18\right)\left(x+18\right)
24x-432 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-432-48x+432=\left(x-18\right)\left(x+18\right)
-48x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -24x ਅਤੇ -24x ਨੂੰ ਮਿਲਾਓ।
-48x=\left(x-18\right)\left(x+18\right)
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -432 ਅਤੇ 432 ਨੂੰ ਜੋੜੋ।
-48x=x^{2}-324
\left(x-18\right)\left(x+18\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}। 18 ਦਾ ਵਰਗ ਕਰੋ।
-48x-x^{2}=-324
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-x^{2}-48x=-324
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-x^{2}-48x}{-1}=-\frac{324}{-1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{48}{-1}\right)x=-\frac{324}{-1}
-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+48x=-\frac{324}{-1}
-48 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+48x=324
-324 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+48x+24^{2}=324+24^{2}
48, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 24 ਨਿਕਲੇ। ਫੇਰ, 24 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+48x+576=324+576
24 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}+48x+576=900
324 ਨੂੰ 576 ਵਿੱਚ ਜੋੜੋ।
\left(x+24\right)^{2}=900
ਫੈਕਟਰ x^{2}+48x+576। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+24\right)^{2}}=\sqrt{900}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+24=30 x+24=-30
ਸਪਸ਼ਟ ਕਰੋ।
x=6 x=-54
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 24 ਨੂੰ ਘਟਾਓ।