ਮੁਲਾਂਕਣ ਕਰੋ
\frac{5880}{167}\approx 35.209580838
ਫੈਕਟਰ
\frac{2 ^ {3} \cdot 3 \cdot 5 \cdot 7 ^ {2}}{167} = 35\frac{35}{167} = 35.209580838323355
ਕੁਇਜ਼
Arithmetic
5 ਪ੍ਰਸ਼ਨ ਇਸ ਵਰਗੇ ਹਨ:
\frac { 20 + 29 } { \frac { 20 } { 30 } + \frac { 29 } { 40 } } =
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{49}{\frac{20}{30}+\frac{29}{40}}
49 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 20 ਅਤੇ 29 ਨੂੰ ਜੋੜੋ।
\frac{49}{\frac{2}{3}+\frac{29}{40}}
10 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{20}{30} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{49}{\frac{80}{120}+\frac{87}{120}}
3 ਅਤੇ 40 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 120 ਹੈ। \frac{2}{3} ਅਤੇ \frac{29}{40} ਨੂੰ 120 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{49}{\frac{80+87}{120}}
ਕਿਉਂਕਿ \frac{80}{120} ਅਤੇ \frac{87}{120} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{49}{\frac{167}{120}}
167 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 80 ਅਤੇ 87 ਨੂੰ ਜੋੜੋ।
49\times \frac{120}{167}
49 ਨੂੰ \frac{167}{120} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 49ਨੂੰ \frac{167}{120} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{49\times 120}{167}
49\times \frac{120}{167} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{5880}{167}
5880 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 49 ਅਤੇ 120 ਨੂੰ ਗੁਣਾ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}