ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਵਿਸਤਾਰ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{2\left(y-3\right)}{\left(y-3\right)\left(y+3\right)}-\frac{y}{y-1}+\frac{y^{2}+2}{y^{2}+2y-3}
\frac{2y-6}{y^{2}-9} ਵਿੱਚ ਪਹਿਲਾਂ ਹੀ ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{2}{y+3}-\frac{y}{y-1}+\frac{y^{2}+2}{y^{2}+2y-3}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ y-3 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{2\left(y-1\right)}{\left(y-1\right)\left(y+3\right)}-\frac{y\left(y+3\right)}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। y+3 ਅਤੇ y-1 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(y-1\right)\left(y+3\right) ਹੈ। \frac{2}{y+3} ਨੂੰ \frac{y-1}{y-1} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{y}{y-1} ਨੂੰ \frac{y+3}{y+3} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{2\left(y-1\right)-y\left(y+3\right)}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
ਕਿਉਂਕਿ \frac{2\left(y-1\right)}{\left(y-1\right)\left(y+3\right)} ਅਤੇ \frac{y\left(y+3\right)}{\left(y-1\right)\left(y+3\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{2y-2-y^{2}-3y}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
2\left(y-1\right)-y\left(y+3\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-y-2-y^{2}}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
2y-2-y^{2}-3y ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{-y-2-y^{2}}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{\left(y-1\right)\left(y+3\right)}
y^{2}+2y-3 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
\frac{-y-2-y^{2}+y^{2}+2}{\left(y-1\right)\left(y+3\right)}
ਕਿਉਂਕਿ \frac{-y-2-y^{2}}{\left(y-1\right)\left(y+3\right)} ਅਤੇ \frac{y^{2}+2}{\left(y-1\right)\left(y+3\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{-y}{\left(y-1\right)\left(y+3\right)}
-y-2-y^{2}+y^{2}+2 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{-y}{y^{2}+2y-3}
\left(y-1\right)\left(y+3\right) ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
\frac{2\left(y-3\right)}{\left(y-3\right)\left(y+3\right)}-\frac{y}{y-1}+\frac{y^{2}+2}{y^{2}+2y-3}
\frac{2y-6}{y^{2}-9} ਵਿੱਚ ਪਹਿਲਾਂ ਹੀ ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{2}{y+3}-\frac{y}{y-1}+\frac{y^{2}+2}{y^{2}+2y-3}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ y-3 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{2\left(y-1\right)}{\left(y-1\right)\left(y+3\right)}-\frac{y\left(y+3\right)}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। y+3 ਅਤੇ y-1 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(y-1\right)\left(y+3\right) ਹੈ। \frac{2}{y+3} ਨੂੰ \frac{y-1}{y-1} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{y}{y-1} ਨੂੰ \frac{y+3}{y+3} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{2\left(y-1\right)-y\left(y+3\right)}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
ਕਿਉਂਕਿ \frac{2\left(y-1\right)}{\left(y-1\right)\left(y+3\right)} ਅਤੇ \frac{y\left(y+3\right)}{\left(y-1\right)\left(y+3\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{2y-2-y^{2}-3y}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
2\left(y-1\right)-y\left(y+3\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-y-2-y^{2}}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
2y-2-y^{2}-3y ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{-y-2-y^{2}}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{\left(y-1\right)\left(y+3\right)}
y^{2}+2y-3 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
\frac{-y-2-y^{2}+y^{2}+2}{\left(y-1\right)\left(y+3\right)}
ਕਿਉਂਕਿ \frac{-y-2-y^{2}}{\left(y-1\right)\left(y+3\right)} ਅਤੇ \frac{y^{2}+2}{\left(y-1\right)\left(y+3\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{-y}{\left(y-1\right)\left(y+3\right)}
-y-2-y^{2}+y^{2}+2 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{-y}{y^{2}+2y-3}
\left(y-1\right)\left(y+3\right) ਦਾ ਵਿਸਥਾਰ ਕਰੋ।