x ਲਈ ਹਲ ਕਰੋ
x=4
x=0
ਗ੍ਰਾਫ
ਕੁਇਜ਼
Quadratic Equation
5 ਪ੍ਰਸ਼ਨ ਇਸ ਵਰਗੇ ਹਨ:
\frac { 2 x - 3 } { x + 1 } + \frac { 2 x - 5 } { x - 1 } = 2
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(x-1\right)\left(2x-3\right)+\left(x+1\right)\left(2x-5\right)=2\left(x-1\right)\left(x+1\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -1,1 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-1\right)\left(x+1\right), ਜੋ x+1,x-1 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
2x^{2}-5x+3+\left(x+1\right)\left(2x-5\right)=2\left(x-1\right)\left(x+1\right)
x-1 ਨੂੰ 2x-3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
2x^{2}-5x+3+2x^{2}-3x-5=2\left(x-1\right)\left(x+1\right)
x+1 ਨੂੰ 2x-5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
4x^{2}-5x+3-3x-5=2\left(x-1\right)\left(x+1\right)
4x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x^{2} ਅਤੇ 2x^{2} ਨੂੰ ਮਿਲਾਓ।
4x^{2}-8x+3-5=2\left(x-1\right)\left(x+1\right)
-8x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -5x ਅਤੇ -3x ਨੂੰ ਮਿਲਾਓ।
4x^{2}-8x-2=2\left(x-1\right)\left(x+1\right)
-2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਵਿੱਚੋਂ 5 ਨੂੰ ਘਟਾ ਦਿਓ।
4x^{2}-8x-2=\left(2x-2\right)\left(x+1\right)
2 ਨੂੰ x-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
4x^{2}-8x-2=2x^{2}-2
2x-2 ਨੂੰ x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
4x^{2}-8x-2-2x^{2}=-2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
2x^{2}-8x-2=-2
2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x^{2} ਅਤੇ -2x^{2} ਨੂੰ ਮਿਲਾਓ।
2x^{2}-8x-2+2=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2 ਜੋੜੋ।
2x^{2}-8x=0
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2 ਅਤੇ 2 ਨੂੰ ਜੋੜੋ।
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2\times 2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 2 ਨੂੰ a ਲਈ, -8 ਨੂੰ b ਲਈ, ਅਤੇ 0 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-8\right)±8}{2\times 2}
\left(-8\right)^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{8±8}{2\times 2}
-8 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 8 ਹੈ।
x=\frac{8±8}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{16}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{8±8}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 8 ਨੂੰ 8 ਵਿੱਚ ਜੋੜੋ।
x=4
16 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{0}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{8±8}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 8 ਵਿੱਚੋਂ 8 ਨੂੰ ਘਟਾਓ।
x=0
0 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=4 x=0
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\left(x-1\right)\left(2x-3\right)+\left(x+1\right)\left(2x-5\right)=2\left(x-1\right)\left(x+1\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -1,1 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-1\right)\left(x+1\right), ਜੋ x+1,x-1 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
2x^{2}-5x+3+\left(x+1\right)\left(2x-5\right)=2\left(x-1\right)\left(x+1\right)
x-1 ਨੂੰ 2x-3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
2x^{2}-5x+3+2x^{2}-3x-5=2\left(x-1\right)\left(x+1\right)
x+1 ਨੂੰ 2x-5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
4x^{2}-5x+3-3x-5=2\left(x-1\right)\left(x+1\right)
4x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x^{2} ਅਤੇ 2x^{2} ਨੂੰ ਮਿਲਾਓ।
4x^{2}-8x+3-5=2\left(x-1\right)\left(x+1\right)
-8x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -5x ਅਤੇ -3x ਨੂੰ ਮਿਲਾਓ।
4x^{2}-8x-2=2\left(x-1\right)\left(x+1\right)
-2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਵਿੱਚੋਂ 5 ਨੂੰ ਘਟਾ ਦਿਓ।
4x^{2}-8x-2=\left(2x-2\right)\left(x+1\right)
2 ਨੂੰ x-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
4x^{2}-8x-2=2x^{2}-2
2x-2 ਨੂੰ x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
4x^{2}-8x-2-2x^{2}=-2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
2x^{2}-8x-2=-2
2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x^{2} ਅਤੇ -2x^{2} ਨੂੰ ਮਿਲਾਓ।
2x^{2}-8x=-2+2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2 ਜੋੜੋ।
2x^{2}-8x=0
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2 ਅਤੇ 2 ਨੂੰ ਜੋੜੋ।
\frac{2x^{2}-8x}{2}=\frac{0}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{8}{2}\right)x=\frac{0}{2}
2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-4x=\frac{0}{2}
-8 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-4x=0
0 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-4x+\left(-2\right)^{2}=\left(-2\right)^{2}
-4, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -2 ਨਿਕਲੇ। ਫੇਰ, -2 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-4x+4=4
-2 ਦਾ ਵਰਗ ਕਰੋ।
\left(x-2\right)^{2}=4
ਫੈਕਟਰ x^{2}-4x+4। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-2\right)^{2}}=\sqrt{4}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-2=2 x-2=-2
ਸਪਸ਼ਟ ਕਰੋ।
x=4 x=0
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2 ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}