ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

2x-2x^{2}=12\left(x-2\right)
ਵੇਰੀਏਬਲ x, 2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x-2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
2x-2x^{2}=12x-24
12 ਨੂੰ x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2x-2x^{2}-12x=-24
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 12x ਨੂੰ ਘਟਾ ਦਿਓ।
-10x-2x^{2}=-24
-10x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x ਅਤੇ -12x ਨੂੰ ਮਿਲਾਓ।
-10x-2x^{2}+24=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 24 ਜੋੜੋ।
-2x^{2}-10x+24=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-2\right)\times 24}}{2\left(-2\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -2 ਨੂੰ a ਲਈ, -10 ਨੂੰ b ਲਈ, ਅਤੇ 24 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-2\right)\times 24}}{2\left(-2\right)}
-10 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-10\right)±\sqrt{100+8\times 24}}{2\left(-2\right)}
-4 ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-10\right)±\sqrt{100+192}}{2\left(-2\right)}
8 ਨੂੰ 24 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-10\right)±\sqrt{292}}{2\left(-2\right)}
100 ਨੂੰ 192 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-10\right)±2\sqrt{73}}{2\left(-2\right)}
292 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{10±2\sqrt{73}}{2\left(-2\right)}
-10 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 10 ਹੈ।
x=\frac{10±2\sqrt{73}}{-4}
2 ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{2\sqrt{73}+10}{-4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{10±2\sqrt{73}}{-4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 10 ਨੂੰ 2\sqrt{73} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\sqrt{73}-5}{2}
10+2\sqrt{73} ਨੂੰ -4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{10-2\sqrt{73}}{-4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{10±2\sqrt{73}}{-4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 10 ਵਿੱਚੋਂ 2\sqrt{73} ਨੂੰ ਘਟਾਓ।
x=\frac{\sqrt{73}-5}{2}
10-2\sqrt{73} ਨੂੰ -4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-\sqrt{73}-5}{2} x=\frac{\sqrt{73}-5}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
2x-2x^{2}=12\left(x-2\right)
ਵੇਰੀਏਬਲ x, 2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x-2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
2x-2x^{2}=12x-24
12 ਨੂੰ x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2x-2x^{2}-12x=-24
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 12x ਨੂੰ ਘਟਾ ਦਿਓ।
-10x-2x^{2}=-24
-10x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x ਅਤੇ -12x ਨੂੰ ਮਿਲਾਓ।
-2x^{2}-10x=-24
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-2x^{2}-10x}{-2}=-\frac{24}{-2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{10}{-2}\right)x=-\frac{24}{-2}
-2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+5x=-\frac{24}{-2}
-10 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+5x=12
-24 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=12+\left(\frac{5}{2}\right)^{2}
5, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{5}{2} ਨਿਕਲੇ। ਫੇਰ, \frac{5}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+5x+\frac{25}{4}=12+\frac{25}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{5}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+5x+\frac{25}{4}=\frac{73}{4}
12 ਨੂੰ \frac{25}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x+\frac{5}{2}\right)^{2}=\frac{73}{4}
ਫੈਕਟਰ x^{2}+5x+\frac{25}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{73}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{5}{2}=\frac{\sqrt{73}}{2} x+\frac{5}{2}=-\frac{\sqrt{73}}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{73}-5}{2} x=\frac{-\sqrt{73}-5}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{5}{2} ਨੂੰ ਘਟਾਓ।