x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x\in \mathrm{C}\setminus 1,0
x ਲਈ ਹਲ ਕਰੋ
x\in \mathrm{R}\setminus 1,0
ਗ੍ਰਾਫ
ਕੁਇਜ਼
Polynomial
5 ਪ੍ਰਸ਼ਨ ਇਸ ਵਰਗੇ ਹਨ:
\frac { 2 x } { x - 1 } = \frac { 2 x ^ { 2 } } { x ^ { 2 } - x }
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
x\times 2x=2x^{2}
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ 0,1 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x\left(x-1\right), ਜੋ x-1,x^{2}-x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}\times 2=2x^{2}
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}\times 2-2x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
0=0
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2}\times 2 ਅਤੇ -2x^{2} ਨੂੰ ਮਿਲਾਓ।
\text{true}
0 ਅਤੇ 0 ਵਿੱਚ ਤੁਲਨਾ ਕਰੋ।
x\in \mathrm{C}
ਇਹ ਕਿਸੇ ਵੀ x ਲਈ ਸਹੀ ਹੈ।
x\in \mathrm{C}\setminus 0,1
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ 1,0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।
x\times 2x=2x^{2}
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ 0,1 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x\left(x-1\right), ਜੋ x-1,x^{2}-x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}\times 2=2x^{2}
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}\times 2-2x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
0=0
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2}\times 2 ਅਤੇ -2x^{2} ਨੂੰ ਮਿਲਾਓ।
\text{true}
0 ਅਤੇ 0 ਵਿੱਚ ਤੁਲਨਾ ਕਰੋ।
x\in \mathrm{R}
ਇਹ ਕਿਸੇ ਵੀ x ਲਈ ਸਹੀ ਹੈ।
x\in \mathrm{R}\setminus 0,1
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ 1,0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}