ਮੁਲਾਂਕਣ ਕਰੋ
\frac{14-3y}{y^{2}-16}
ਅੰਤਰ ਦੱਸੋ w.r.t. y
\frac{3y^{2}-28y+48}{\left(y^{2}-16\right)^{2}}
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{2}{\left(y-4\right)\left(y+4\right)}-\frac{3}{y+4}
y^{2}-16 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
\frac{2}{\left(y-4\right)\left(y+4\right)}-\frac{3\left(y-4\right)}{\left(y-4\right)\left(y+4\right)}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। \left(y-4\right)\left(y+4\right) ਅਤੇ y+4 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(y-4\right)\left(y+4\right) ਹੈ। \frac{3}{y+4} ਨੂੰ \frac{y-4}{y-4} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{2-3\left(y-4\right)}{\left(y-4\right)\left(y+4\right)}
ਕਿਉਂਕਿ \frac{2}{\left(y-4\right)\left(y+4\right)} ਅਤੇ \frac{3\left(y-4\right)}{\left(y-4\right)\left(y+4\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{2-3y+12}{\left(y-4\right)\left(y+4\right)}
2-3\left(y-4\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{14-3y}{\left(y-4\right)\left(y+4\right)}
2-3y+12 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{14-3y}{y^{2}-16}
\left(y-4\right)\left(y+4\right) ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{2}{\left(y-4\right)\left(y+4\right)}-\frac{3}{y+4})
y^{2}-16 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{2}{\left(y-4\right)\left(y+4\right)}-\frac{3\left(y-4\right)}{\left(y-4\right)\left(y+4\right)})
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। \left(y-4\right)\left(y+4\right) ਅਤੇ y+4 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(y-4\right)\left(y+4\right) ਹੈ। \frac{3}{y+4} ਨੂੰ \frac{y-4}{y-4} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{2-3\left(y-4\right)}{\left(y-4\right)\left(y+4\right)})
ਕਿਉਂਕਿ \frac{2}{\left(y-4\right)\left(y+4\right)} ਅਤੇ \frac{3\left(y-4\right)}{\left(y-4\right)\left(y+4\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{2-3y+12}{\left(y-4\right)\left(y+4\right)})
2-3\left(y-4\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{14-3y}{\left(y-4\right)\left(y+4\right)})
2-3y+12 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{14-3y}{y^{2}-16})
\left(y-4\right)\left(y+4\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}। 4 ਦਾ ਵਰਗ ਕਰੋ।
\frac{\left(y^{2}-16\right)\frac{\mathrm{d}}{\mathrm{d}y}(-3y^{1}+14)-\left(-3y^{1}+14\right)\frac{\mathrm{d}}{\mathrm{d}y}(y^{2}-16)}{\left(y^{2}-16\right)^{2}}
ਅੰਤਰ ਕੱਢਣ ਯੋਗ ਕਿਸੇ ਦੋ ਫੰਗਸ਼ਨ ਲਈ, ਦੋ ਫੰਗਸ਼ਨਾਂ ਦੇ ਭਾਗਫਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਨਿਉਮਰੇਟਰ ਦੇ ਡੈਰੀਵੇਟਿਵ ਨਾਲ ਗੁਣਾ ਕਰਕੇ, - ਨਿਉਮਰੇਟਰ ਨੂੰ ਡੀਨੋਮਿਨੇਟਰ ਨਾਲ ਗੁਣਾ ਕਰਕੇ, ਸਾਰੇ ਵਰਗ ਵਿੱਚ ਰੱਖੇ ਡੀਨੋਮਿਨੇਟਰ ਨਾਲ ਤਕਸੀਮ ਕਰਕੇ ਨਿਕਲਦਾ ਹੈ।
\frac{\left(y^{2}-16\right)\left(-3\right)y^{1-1}-\left(-3y^{1}+14\right)\times 2y^{2-1}}{\left(y^{2}-16\right)^{2}}
ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਇਸ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਡੈਰੀਵੇਟਿਵਸ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਸਥਿਰ ਸੰਖਿਆ ਦਾ ਡੈਰੀਵੇਟਿਵ 0 ਹੁੰਦਾ ਹੈ। ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
\frac{\left(y^{2}-16\right)\left(-3\right)y^{0}-\left(-3y^{1}+14\right)\times 2y^{1}}{\left(y^{2}-16\right)^{2}}
ਗਿਣਤੀ ਕਰੋ।
\frac{y^{2}\left(-3\right)y^{0}-16\left(-3\right)y^{0}-\left(-3y^{1}\times 2y^{1}+14\times 2y^{1}\right)}{\left(y^{2}-16\right)^{2}}
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤਦਿਆਂ ਵਿਸਥਾਰ ਕਰੋ।
\frac{-3y^{2}-16\left(-3\right)y^{0}-\left(-3\times 2y^{1+1}+14\times 2y^{1}\right)}{\left(y^{2}-16\right)^{2}}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ।
\frac{-3y^{2}+48y^{0}-\left(-6y^{2}+28y^{1}\right)}{\left(y^{2}-16\right)^{2}}
ਗਿਣਤੀ ਕਰੋ।
\frac{-3y^{2}+48y^{0}-\left(-6y^{2}\right)-28y^{1}}{\left(y^{2}-16\right)^{2}}
ਬੇਲੋੜੀਆਂ ਬ੍ਰੈਕਟਾਂ ਨੂੰ ਹਟਾਓ।
\frac{\left(-3-\left(-6\right)\right)y^{2}+48y^{0}-28y^{1}}{\left(y^{2}-16\right)^{2}}
ਇੱਕ-ਸਮਾਨ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\frac{3y^{2}+48y^{0}-28y^{1}}{\left(y^{2}-16\right)^{2}}
-3 ਵਿੱਚੋਂ -6 ਨੂੰ ਘਟਾਓ।
\frac{3y^{2}+48y^{0}-28y}{\left(y^{2}-16\right)^{2}}
ਕਿਸੇ t, t^{1}=t ਸੰਖਿਆ ਲਈ।
\frac{3y^{2}+48\times 1-28y}{\left(y^{2}-16\right)^{2}}
ਕਿਸੇ ਵੀ t ਸੰਖਿਆ ਲਈ, 0, t^{0}=1 ਨੂੰ ਛੱਡ ਕੇ।
\frac{3y^{2}+48-28y}{\left(y^{2}-16\right)^{2}}
ਕਿਸੇ ਸੰਖਿਆ t, t\times 1=t ਅਤੇ 1t=t ਲਈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}