x ਲਈ ਹਲ ਕਰੋ
x=-1
x=12
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(x+6\right)\times 2+x\times 15=x\left(x+6\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -6,0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x\left(x+6\right), ਜੋ x,x+6 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
2x+12+x\times 15=x\left(x+6\right)
x+6 ਨੂੰ 2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
17x+12=x\left(x+6\right)
17x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x ਅਤੇ x\times 15 ਨੂੰ ਮਿਲਾਓ।
17x+12=x^{2}+6x
x ਨੂੰ x+6 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
17x+12-x^{2}=6x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
17x+12-x^{2}-6x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 6x ਨੂੰ ਘਟਾ ਦਿਓ।
11x+12-x^{2}=0
11x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 17x ਅਤੇ -6x ਨੂੰ ਮਿਲਾਓ।
-x^{2}+11x+12=0
ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖਣ ਲਈ ਇਸ ਨੂੰ ਦੁਬਾਰਾ-ਵਿਵਸਥਿਤ ਕਰੋ। ਸੰਖਿਆਵਾਂ ਨੂੰ ਸਭ ਤੋਂ ਵੱਡੀ ਤੋਂ ਸਭ ਤੋਂ ਛੋਟੀ ਪਾਵਰ ਦੀ ਤਰਤੀਬ ਵਿੱਚ ਲਗਾਓ।
a+b=11 ab=-12=-12
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ -x^{2}+ax+bx+12 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,12 -2,6 -3,4
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, ਪਾਜ਼ੇਟਿਵ ਨੰਬਰ ਦੀ ਨੈਗੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -12 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1+12=11 -2+6=4 -3+4=1
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=12 b=-1
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 11 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(-x^{2}+12x\right)+\left(-x+12\right)
-x^{2}+11x+12 ਨੂੰ \left(-x^{2}+12x\right)+\left(-x+12\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
-x\left(x-12\right)-\left(x-12\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ -x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -1 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(x-12\right)\left(-x-1\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x-12 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=12 x=-1
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x-12=0 ਅਤੇ -x-1=0 ਨੂੰ ਹੱਲ ਕਰੋ।
\left(x+6\right)\times 2+x\times 15=x\left(x+6\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -6,0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x\left(x+6\right), ਜੋ x,x+6 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
2x+12+x\times 15=x\left(x+6\right)
x+6 ਨੂੰ 2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
17x+12=x\left(x+6\right)
17x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x ਅਤੇ x\times 15 ਨੂੰ ਮਿਲਾਓ।
17x+12=x^{2}+6x
x ਨੂੰ x+6 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
17x+12-x^{2}=6x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
17x+12-x^{2}-6x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 6x ਨੂੰ ਘਟਾ ਦਿਓ।
11x+12-x^{2}=0
11x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 17x ਅਤੇ -6x ਨੂੰ ਮਿਲਾਓ।
-x^{2}+11x+12=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-11±\sqrt{11^{2}-4\left(-1\right)\times 12}}{2\left(-1\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -1 ਨੂੰ a ਲਈ, 11 ਨੂੰ b ਲਈ, ਅਤੇ 12 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-11±\sqrt{121-4\left(-1\right)\times 12}}{2\left(-1\right)}
11 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-11±\sqrt{121+4\times 12}}{2\left(-1\right)}
-4 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-11±\sqrt{121+48}}{2\left(-1\right)}
4 ਨੂੰ 12 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-11±\sqrt{169}}{2\left(-1\right)}
121 ਨੂੰ 48 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-11±13}{2\left(-1\right)}
169 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-11±13}{-2}
2 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{2}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-11±13}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -11 ਨੂੰ 13 ਵਿੱਚ ਜੋੜੋ।
x=-1
2 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{24}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-11±13}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -11 ਵਿੱਚੋਂ 13 ਨੂੰ ਘਟਾਓ।
x=12
-24 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-1 x=12
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\left(x+6\right)\times 2+x\times 15=x\left(x+6\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -6,0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x\left(x+6\right), ਜੋ x,x+6 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
2x+12+x\times 15=x\left(x+6\right)
x+6 ਨੂੰ 2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
17x+12=x\left(x+6\right)
17x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x ਅਤੇ x\times 15 ਨੂੰ ਮਿਲਾਓ।
17x+12=x^{2}+6x
x ਨੂੰ x+6 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
17x+12-x^{2}=6x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
17x+12-x^{2}-6x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 6x ਨੂੰ ਘਟਾ ਦਿਓ।
11x+12-x^{2}=0
11x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 17x ਅਤੇ -6x ਨੂੰ ਮਿਲਾਓ।
11x-x^{2}=-12
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 12 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
-x^{2}+11x=-12
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-x^{2}+11x}{-1}=-\frac{12}{-1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{11}{-1}x=-\frac{12}{-1}
-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-11x=-\frac{12}{-1}
11 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-11x=12
-12 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=12+\left(-\frac{11}{2}\right)^{2}
-11, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{11}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{11}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-11x+\frac{121}{4}=12+\frac{121}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{11}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-11x+\frac{121}{4}=\frac{169}{4}
12 ਨੂੰ \frac{121}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{11}{2}\right)^{2}=\frac{169}{4}
ਫੈਕਟਰ x^{2}-11x+\frac{121}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{11}{2}=\frac{13}{2} x-\frac{11}{2}=-\frac{13}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=12 x=-1
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{11}{2} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}