ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\left(x^{2}+1\right)\times 2-\left(x^{2}-1\right)\times 2=4
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -1,-i,i,1 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-1\right)\left(x+1\right)\left(x-i\right)\left(x+i\right), ਜੋ x^{2}-1,x^{2}+1,x^{4}-1 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
2x^{2}+2-\left(x^{2}-1\right)\times 2=4
x^{2}+1 ਨੂੰ 2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2x^{2}+2-\left(2x^{2}-2\right)=4
x^{2}-1 ਨੂੰ 2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2x^{2}+2-2x^{2}+2=4
2x^{2}-2 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
2+2=4
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x^{2} ਅਤੇ -2x^{2} ਨੂੰ ਮਿਲਾਓ।
4=4
4 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 2 ਨੂੰ ਜੋੜੋ।
\text{true}
4 ਅਤੇ 4 ਵਿੱਚ ਤੁਲਨਾ ਕਰੋ।
x\in \mathrm{C}
ਇਹ ਕਿਸੇ ਵੀ x ਲਈ ਸਹੀ ਹੈ।
x\in \mathrm{C}\setminus -i,i,-1,1
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -i,i,-1,1 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।
\left(x^{2}+1\right)\times 2-\left(x^{2}-1\right)\times 2=4
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -1,1 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-1\right)\left(x+1\right)\left(x^{2}+1\right), ਜੋ x^{2}-1,x^{2}+1,x^{4}-1 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
2x^{2}+2-\left(x^{2}-1\right)\times 2=4
x^{2}+1 ਨੂੰ 2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2x^{2}+2-\left(2x^{2}-2\right)=4
x^{2}-1 ਨੂੰ 2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2x^{2}+2-2x^{2}+2=4
2x^{2}-2 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
2+2=4
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x^{2} ਅਤੇ -2x^{2} ਨੂੰ ਮਿਲਾਓ।
4=4
4 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 2 ਨੂੰ ਜੋੜੋ।
\text{true}
4 ਅਤੇ 4 ਵਿੱਚ ਤੁਲਨਾ ਕਰੋ।
x\in \mathrm{R}
ਇਹ ਕਿਸੇ ਵੀ x ਲਈ ਸਹੀ ਹੈ।
x\in \mathrm{R}\setminus -1,1
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -1,1 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।