ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਫੈਕਟਰ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{\left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right)}+\frac{\sqrt{3}}{\sqrt{3}-2}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ 2\sqrt{3}+3 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{2\sqrt{3}}{2\sqrt{3}-3} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{\left(2\sqrt{3}\right)^{2}-3^{2}}+\frac{\sqrt{3}}{\sqrt{3}-2}
\left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{2^{2}\left(\sqrt{3}\right)^{2}-3^{2}}+\frac{\sqrt{3}}{\sqrt{3}-2}
\left(2\sqrt{3}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{4\left(\sqrt{3}\right)^{2}-3^{2}}+\frac{\sqrt{3}}{\sqrt{3}-2}
2 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 4 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{4\times 3-3^{2}}+\frac{\sqrt{3}}{\sqrt{3}-2}
\sqrt{3} ਦਾ ਸਕ੍ਵੇਅਰ 3 ਹੈ।
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{12-3^{2}}+\frac{\sqrt{3}}{\sqrt{3}-2}
12 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{12-9}+\frac{\sqrt{3}}{\sqrt{3}-2}
3 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 9 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{3}+\frac{\sqrt{3}}{\sqrt{3}-2}
3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12 ਵਿੱਚੋਂ 9 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{3}+\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{3}+2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{\sqrt{3}}{\sqrt{3}-2} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{3}+\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\left(\sqrt{3}\right)^{2}-2^{2}}
\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{3}+\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{3-4}
\sqrt{3} ਦਾ ਵਰਗ ਕਰੋ। 2 ਦਾ ਵਰਗ ਕਰੋ।
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{3}+\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{-1}
-1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{3}-\sqrt{3}\left(\sqrt{3}+2\right)
ਜਿਸ ਨੂੰ ਵੀ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਇਸਦਾ ਵਿਪਰੀਤ ਨਤੀਜਾ ਦਿੰਦਾ ਹੈ।
\frac{4\left(\sqrt{3}\right)^{2}+6\sqrt{3}}{3}-\sqrt{3}\left(\sqrt{3}+2\right)
2\sqrt{3} ਨੂੰ 2\sqrt{3}+3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\frac{4\times 3+6\sqrt{3}}{3}-\sqrt{3}\left(\sqrt{3}+2\right)
\sqrt{3} ਦਾ ਸਕ੍ਵੇਅਰ 3 ਹੈ।
\frac{12+6\sqrt{3}}{3}-\sqrt{3}\left(\sqrt{3}+2\right)
12 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{12+6\sqrt{3}}{3}-\left(\left(\sqrt{3}\right)^{2}+2\sqrt{3}\right)
\sqrt{3} ਨੂੰ \sqrt{3}+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\frac{12+6\sqrt{3}}{3}-\left(3+2\sqrt{3}\right)
\sqrt{3} ਦਾ ਸਕ੍ਵੇਅਰ 3 ਹੈ।
\frac{12+6\sqrt{3}}{3}-3-2\sqrt{3}
3+2\sqrt{3} ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
\frac{12+6\sqrt{3}}{3}+\frac{3\left(-3-2\sqrt{3}\right)}{3}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। -3-2\sqrt{3} ਨੂੰ \frac{3}{3} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{12+6\sqrt{3}+3\left(-3-2\sqrt{3}\right)}{3}
ਕਿਉਂਕਿ \frac{12+6\sqrt{3}}{3} ਅਤੇ \frac{3\left(-3-2\sqrt{3}\right)}{3} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{12+6\sqrt{3}-9-6\sqrt{3}}{3}
12+6\sqrt{3}+3\left(-3-2\sqrt{3}\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{3}{3}
12+6\sqrt{3}-9-6\sqrt{3} ਵਿੱਚ ਗਿਣਤੀ ਕਰੋ।