ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਅੰਤਰ ਦੱਸੋ w.r.t. x
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\left(14x^{2}\right)^{1}\times \frac{1}{x^{8}}
ਐਕਸਪ੍ਰੈਸ਼ਨ ਨੂੰ ਸਰਲ ਬਣਾਉਣ ਲਈ ਐਕਸਪੋਨੈਂਟਾਂ ਦੇ ਨਿਯਮਾਂ ਨੂੰ ਵਰਤੋਂ।
14^{1}\left(x^{2}\right)^{1}\times \frac{1}{1}\times \frac{1}{x^{8}}
ਦੋ ਜਾਂ ਵੱਧ ਨੰਬਰਾਂ ਦੇ ਗੁਣਨਫਲ ਨੂੰ ਪਾਵਰ ਤੱਕ ਵਧਾਉਣ ਲਈ, ਹਰ ਨੰਬਰ ਨੂੰ ਪਾਵਰ ਤੱਕ ਵਧਾਓ ਅਤੇ ਉਹਨਾਂ ਦਾ ਗੁਣਨਫਲ ਕੱਢੋ।
14^{1}\times \frac{1}{1}\left(x^{2}\right)^{1}\times \frac{1}{x^{8}}
ਗੁਣਨ ਦੀ ਕਮਿਉਟੇਟਿਵ ਪ੍ਰੋਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰੋ।
14^{1}\times \frac{1}{1}x^{2}x^{8\left(-1\right)}
ਕਿਸੇ ਹੋਰ ਨੰਬਰ ਦੀ ਪਾਵਰ ਨੂੰ ਵਧਾਉਣ ਲਈ, ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਗੁਣਾ ਕਰੋ।
14^{1}\times \frac{1}{1}x^{2}x^{-8}
8 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
14^{1}\times \frac{1}{1}x^{2-8}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ।
14^{1}\times \frac{1}{1}x^{-6}
2 ਅਤੇ -8 ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ।
14\times \frac{1}{1}x^{-6}
14 ਨੂੰ 1 ਪਾਵਰ ਤੱਕ ਵਧਾਓ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{14}{1}x^{2-8})
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਤਕਸੀਮ ਕਰਨ ਲਈ, ਡੀਨੋਮਿਨੇਟਰ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਨਿਉਮਰੇਟਰ ਦੇ ਐਕਸਪੋਨੈਂਟ ਵਿੱਚੋਂ ਘਟਾ ਦਿਓ।
\frac{\mathrm{d}}{\mathrm{d}x}(14x^{-6})
ਗਿਣਤੀ ਕਰੋ।
-6\times 14x^{-6-1}
ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਇਸ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਡੈਰੀਵੇਟਿਵਸ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਸਥਿਰ ਸੰਖਿਆ ਦਾ ਡੈਰੀਵੇਟਿਵ 0 ਹੁੰਦਾ ਹੈ। ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
-84x^{-7}
ਗਿਣਤੀ ਕਰੋ।