ਮੁਲਾਂਕਣ ਕਰੋ
\frac{1259}{1386}\approx 0.908369408
ਫੈਕਟਰ
\frac{1259}{2 \cdot 3 ^ {2} \cdot 7 \cdot 11} = 0.9083694083694084
ਕੁਇਜ਼
Arithmetic
5 ਪ੍ਰਸ਼ਨ ਇਸ ਵਰਗੇ ਹਨ:
\frac { 13 } { 14 } + \frac { 16 } { 18 } + \frac { - 10 } { 11 }
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{13}{14}+\frac{8}{9}+\frac{-10}{11}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{16}{18} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{117}{126}+\frac{112}{126}+\frac{-10}{11}
14 ਅਤੇ 9 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 126 ਹੈ। \frac{13}{14} ਅਤੇ \frac{8}{9} ਨੂੰ 126 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{117+112}{126}+\frac{-10}{11}
ਕਿਉਂਕਿ \frac{117}{126} ਅਤੇ \frac{112}{126} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{229}{126}+\frac{-10}{11}
229 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 117 ਅਤੇ 112 ਨੂੰ ਜੋੜੋ।
\frac{229}{126}-\frac{10}{11}
ਨੈਗੇਟਿਵ ਚਿੰਨ੍ਹ ਨੂੰ ਬਾਹਰ ਕੱਢ ਕੇ, ਅੰਕ \frac{-10}{11} ਨੂੰ -\frac{10}{11} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
\frac{2519}{1386}-\frac{1260}{1386}
126 ਅਤੇ 11 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 1386 ਹੈ। \frac{229}{126} ਅਤੇ \frac{10}{11} ਨੂੰ 1386 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{2519-1260}{1386}
ਕਿਉਂਕਿ \frac{2519}{1386} ਅਤੇ \frac{1260}{1386} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{1259}{1386}
1259 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2519 ਵਿੱਚੋਂ 1260 ਨੂੰ ਘਟਾ ਦਿਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}