x ਲਈ ਹਲ ਕਰੋ
x=-2
x=2
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(x-4\right)\times 12-\left(4+x\right)\times 12=8\left(x-4\right)\left(x+4\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -4,4 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-4\right)\left(x+4\right), ਜੋ 4+x,4-x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
12x-48-\left(4+x\right)\times 12=8\left(x-4\right)\left(x+4\right)
x-4 ਨੂੰ 12 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
12x-48-12\left(4+x\right)=8\left(x-4\right)\left(x+4\right)
-12 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ 12 ਨੂੰ ਗੁਣਾ ਕਰੋ।
12x-48-48-12x=8\left(x-4\right)\left(x+4\right)
-12 ਨੂੰ 4+x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
12x-96-12x=8\left(x-4\right)\left(x+4\right)
-96 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -48 ਵਿੱਚੋਂ 48 ਨੂੰ ਘਟਾ ਦਿਓ।
-96=8\left(x-4\right)\left(x+4\right)
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12x ਅਤੇ -12x ਨੂੰ ਮਿਲਾਓ।
-96=\left(8x-32\right)\left(x+4\right)
8 ਨੂੰ x-4 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-96=8x^{2}-128
8x-32 ਨੂੰ x+4 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
8x^{2}-128=-96
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
8x^{2}=-96+128
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 128 ਜੋੜੋ।
8x^{2}=32
32 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -96 ਅਤੇ 128 ਨੂੰ ਜੋੜੋ।
x^{2}=\frac{32}{8}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 8 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}=4
32 ਨੂੰ 8 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 4 ਨਿਕਲੇ।
x=2 x=-2
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
\left(x-4\right)\times 12-\left(4+x\right)\times 12=8\left(x-4\right)\left(x+4\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -4,4 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-4\right)\left(x+4\right), ਜੋ 4+x,4-x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
12x-48-\left(4+x\right)\times 12=8\left(x-4\right)\left(x+4\right)
x-4 ਨੂੰ 12 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
12x-48-12\left(4+x\right)=8\left(x-4\right)\left(x+4\right)
-12 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ 12 ਨੂੰ ਗੁਣਾ ਕਰੋ।
12x-48-48-12x=8\left(x-4\right)\left(x+4\right)
-12 ਨੂੰ 4+x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
12x-96-12x=8\left(x-4\right)\left(x+4\right)
-96 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -48 ਵਿੱਚੋਂ 48 ਨੂੰ ਘਟਾ ਦਿਓ।
-96=8\left(x-4\right)\left(x+4\right)
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12x ਅਤੇ -12x ਨੂੰ ਮਿਲਾਓ।
-96=\left(8x-32\right)\left(x+4\right)
8 ਨੂੰ x-4 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-96=8x^{2}-128
8x-32 ਨੂੰ x+4 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
8x^{2}-128=-96
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
8x^{2}-128+96=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 96 ਜੋੜੋ।
8x^{2}-32=0
-32 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -128 ਅਤੇ 96 ਨੂੰ ਜੋੜੋ।
x=\frac{0±\sqrt{0^{2}-4\times 8\left(-32\right)}}{2\times 8}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 8 ਨੂੰ a ਲਈ, 0 ਨੂੰ b ਲਈ, ਅਤੇ -32 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{0±\sqrt{-4\times 8\left(-32\right)}}{2\times 8}
0 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{0±\sqrt{-32\left(-32\right)}}{2\times 8}
-4 ਨੂੰ 8 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±\sqrt{1024}}{2\times 8}
-32 ਨੂੰ -32 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±32}{2\times 8}
1024 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{0±32}{16}
2 ਨੂੰ 8 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=2
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±32}{16} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 32 ਨੂੰ 16 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-2
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±32}{16} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -32 ਨੂੰ 16 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=2 x=-2
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}