ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਵਾਸਤਵਿਕ ਭਾਗ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{104i\left(5-i\right)}{\left(5+i\right)\left(5-i\right)}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਨੂੰ, ਡੀਨੋਮਿਨੇਟਰ 5-i ਦੇ ਕੋਮਪਲੈਕਸ ਕੰਜੂਗੇਟ (ਸੰਯੁਜਮੀ) ਨਾਲ ਗੁਣਾ ਕਰੋ।
\frac{104i\left(5-i\right)}{5^{2}-i^{2}}
ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\frac{104i\left(5-i\right)}{26}
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ। ਡੀਨੋਮਿਨੇਟਰ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
\frac{104i\times 5+104\left(-1\right)i^{2}}{26}
104i ਨੂੰ 5-i ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{104i\times 5+104\left(-1\right)\left(-1\right)}{26}
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ।
\frac{104+520i}{26}
104i\times 5+104\left(-1\right)\left(-1\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ। ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੁਬਾਰਾ ਤਰਤੀਬ ਦਿਓ।
4+20i
104+520i ਨੂੰ 26 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 4+20i ਨਿਕਲੇ।
Re(\frac{104i\left(5-i\right)}{\left(5+i\right)\left(5-i\right)})
\frac{104i}{5+i} ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਨੂੰ, ਡੀਨੋਮਿਨੇਟਰ 5-i ਦੇ ਕੋਮਪਲੈਕਸ ਕੰਜੂਗੇਟ (ਸੰਯੁਜਮੀ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
Re(\frac{104i\left(5-i\right)}{5^{2}-i^{2}})
ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
Re(\frac{104i\left(5-i\right)}{26})
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ। ਡੀਨੋਮਿਨੇਟਰ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
Re(\frac{104i\times 5+104\left(-1\right)i^{2}}{26})
104i ਨੂੰ 5-i ਵਾਰ ਗੁਣਾ ਕਰੋ।
Re(\frac{104i\times 5+104\left(-1\right)\left(-1\right)}{26})
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ।
Re(\frac{104+520i}{26})
104i\times 5+104\left(-1\right)\left(-1\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ। ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੁਬਾਰਾ ਤਰਤੀਬ ਦਿਓ।
Re(4+20i)
104+520i ਨੂੰ 26 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 4+20i ਨਿਕਲੇ।
4
4+20i ਦਾ ਅਸਲੀ ਹਿੱਸਾ 4 ਹੈ।