ਮੁਲਾਂਕਣ ਕਰੋ
\frac{10-x^{2}}{x-3}
ਅੰਤਰ ਦੱਸੋ w.r.t. x
\frac{-x^{2}+6x-10}{\left(x-3\right)^{2}}
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{1}{x-3}+\frac{\left(-x-3\right)\left(x-3\right)}{x-3}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। -x-3 ਨੂੰ \frac{x-3}{x-3} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{1+\left(-x-3\right)\left(x-3\right)}{x-3}
ਕਿਉਂਕਿ \frac{1}{x-3} ਅਤੇ \frac{\left(-x-3\right)\left(x-3\right)}{x-3} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{1-x^{2}+3x-3x+9}{x-3}
1+\left(-x-3\right)\left(x-3\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{10-x^{2}}{x-3}
1-x^{2}+3x-3x+9 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x-3}+\frac{\left(-x-3\right)\left(x-3\right)}{x-3})
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। -x-3 ਨੂੰ \frac{x-3}{x-3} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+\left(-x-3\right)\left(x-3\right)}{x-3})
ਕਿਉਂਕਿ \frac{1}{x-3} ਅਤੇ \frac{\left(-x-3\right)\left(x-3\right)}{x-3} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1-x^{2}+3x-3x+9}{x-3})
1+\left(-x-3\right)\left(x-3\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10-x^{2}}{x-3})
1-x^{2}+3x-3x+9 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\left(x^{1}-3\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2}+10)-\left(-x^{2}+10\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-3)}{\left(x^{1}-3\right)^{2}}
ਅੰਤਰ ਕੱਢਣ ਯੋਗ ਕਿਸੇ ਦੋ ਫੰਗਸ਼ਨ ਲਈ, ਦੋ ਫੰਗਸ਼ਨਾਂ ਦੇ ਭਾਗਫਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਨਿਉਮਰੇਟਰ ਦੇ ਡੈਰੀਵੇਟਿਵ ਨਾਲ ਗੁਣਾ ਕਰਕੇ, - ਨਿਉਮਰੇਟਰ ਨੂੰ ਡੀਨੋਮਿਨੇਟਰ ਨਾਲ ਗੁਣਾ ਕਰਕੇ, ਸਾਰੇ ਵਰਗ ਵਿੱਚ ਰੱਖੇ ਡੀਨੋਮਿਨੇਟਰ ਨਾਲ ਤਕਸੀਮ ਕਰਕੇ ਨਿਕਲਦਾ ਹੈ।
\frac{\left(x^{1}-3\right)\times 2\left(-1\right)x^{2-1}-\left(-x^{2}+10\right)x^{1-1}}{\left(x^{1}-3\right)^{2}}
ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਇਸ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਡੈਰੀਵੇਟਿਵਸ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਸਥਿਰ ਸੰਖਿਆ ਦਾ ਡੈਰੀਵੇਟਿਵ 0 ਹੁੰਦਾ ਹੈ। ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
\frac{\left(x^{1}-3\right)\left(-2\right)x^{1}-\left(-x^{2}+10\right)x^{0}}{\left(x^{1}-3\right)^{2}}
ਗਿਣਤੀ ਕਰੋ।
\frac{x^{1}\left(-2\right)x^{1}-3\left(-2\right)x^{1}-\left(-x^{2}x^{0}+10x^{0}\right)}{\left(x^{1}-3\right)^{2}}
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤਦਿਆਂ ਵਿਸਥਾਰ ਕਰੋ।
\frac{-2x^{1+1}-3\left(-2\right)x^{1}-\left(-x^{2}+10x^{0}\right)}{\left(x^{1}-3\right)^{2}}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ।
\frac{-2x^{2}+6x^{1}-\left(-x^{2}+10x^{0}\right)}{\left(x^{1}-3\right)^{2}}
ਗਿਣਤੀ ਕਰੋ।
\frac{-2x^{2}+6x^{1}-\left(-x^{2}\right)-10x^{0}}{\left(x^{1}-3\right)^{2}}
ਬੇਲੋੜੀਆਂ ਬ੍ਰੈਕਟਾਂ ਨੂੰ ਹਟਾਓ।
\frac{\left(-2-\left(-1\right)\right)x^{2}+6x^{1}-10x^{0}}{\left(x^{1}-3\right)^{2}}
ਇੱਕ-ਸਮਾਨ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\frac{-x^{2}+6x^{1}-10x^{0}}{\left(x^{1}-3\right)^{2}}
-2 ਵਿੱਚੋਂ -1 ਨੂੰ ਘਟਾਓ।
\frac{-x^{2}+6x-10x^{0}}{\left(x-3\right)^{2}}
ਕਿਸੇ t, t^{1}=t ਸੰਖਿਆ ਲਈ।
\frac{-x^{2}+6x-10\times 1}{\left(x-3\right)^{2}}
ਕਿਸੇ ਵੀ t ਸੰਖਿਆ ਲਈ, 0, t^{0}=1 ਨੂੰ ਛੱਡ ਕੇ।
\frac{-x^{2}+6x-10}{\left(x-3\right)^{2}}
ਕਿਸੇ ਸੰਖਿਆ t, t\times 1=t ਅਤੇ 1t=t ਲਈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}