ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

x+1+x\times 4+x\left(x+1\right)=\left(x+1\right)\times 15
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -1,0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x\left(x+1\right), ਜੋ x,x+1 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
5x+1+x\left(x+1\right)=\left(x+1\right)\times 15
5x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x\times 4 ਨੂੰ ਮਿਲਾਓ।
5x+1+x^{2}+x=\left(x+1\right)\times 15
x ਨੂੰ x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
6x+1+x^{2}=\left(x+1\right)\times 15
6x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5x ਅਤੇ x ਨੂੰ ਮਿਲਾਓ।
6x+1+x^{2}=15x+15
x+1 ਨੂੰ 15 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
6x+1+x^{2}-15x=15
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 15x ਨੂੰ ਘਟਾ ਦਿਓ।
-9x+1+x^{2}=15
-9x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6x ਅਤੇ -15x ਨੂੰ ਮਿਲਾਓ।
-9x+1+x^{2}-15=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 15 ਨੂੰ ਘਟਾ ਦਿਓ।
-9x-14+x^{2}=0
-14 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਵਿੱਚੋਂ 15 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-9x-14=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-14\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, -9 ਨੂੰ b ਲਈ, ਅਤੇ -14 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-14\right)}}{2}
-9 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-9\right)±\sqrt{81+56}}{2}
-4 ਨੂੰ -14 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-9\right)±\sqrt{137}}{2}
81 ਨੂੰ 56 ਵਿੱਚ ਜੋੜੋ।
x=\frac{9±\sqrt{137}}{2}
-9 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 9 ਹੈ।
x=\frac{\sqrt{137}+9}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{9±\sqrt{137}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 9 ਨੂੰ \sqrt{137} ਵਿੱਚ ਜੋੜੋ।
x=\frac{9-\sqrt{137}}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{9±\sqrt{137}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 9 ਵਿੱਚੋਂ \sqrt{137} ਨੂੰ ਘਟਾਓ।
x=\frac{\sqrt{137}+9}{2} x=\frac{9-\sqrt{137}}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x+1+x\times 4+x\left(x+1\right)=\left(x+1\right)\times 15
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -1,0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x\left(x+1\right), ਜੋ x,x+1 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
5x+1+x\left(x+1\right)=\left(x+1\right)\times 15
5x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x\times 4 ਨੂੰ ਮਿਲਾਓ।
5x+1+x^{2}+x=\left(x+1\right)\times 15
x ਨੂੰ x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
6x+1+x^{2}=\left(x+1\right)\times 15
6x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5x ਅਤੇ x ਨੂੰ ਮਿਲਾਓ।
6x+1+x^{2}=15x+15
x+1 ਨੂੰ 15 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
6x+1+x^{2}-15x=15
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 15x ਨੂੰ ਘਟਾ ਦਿਓ।
-9x+1+x^{2}=15
-9x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6x ਅਤੇ -15x ਨੂੰ ਮਿਲਾਓ।
-9x+x^{2}=15-1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
-9x+x^{2}=14
14 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 15 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-9x=14
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=14+\left(-\frac{9}{2}\right)^{2}
-9, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{9}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{9}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-9x+\frac{81}{4}=14+\frac{81}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{9}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-9x+\frac{81}{4}=\frac{137}{4}
14 ਨੂੰ \frac{81}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{9}{2}\right)^{2}=\frac{137}{4}
ਫੈਕਟਰ x^{2}-9x+\frac{81}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{137}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{9}{2}=\frac{\sqrt{137}}{2} x-\frac{9}{2}=-\frac{\sqrt{137}}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{137}+9}{2} x=\frac{9-\sqrt{137}}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{9}{2} ਨੂੰ ਜੋੜੋ।