ਮੁਲਾਂਕਣ ਕਰੋ
\frac{1}{n\left(n+1\right)}
ਅੰਤਰ ਦੱਸੋ w.r.t. n
-\frac{2n+1}{\left(n\left(n+1\right)\right)^{2}}
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। n ਅਤੇ n+1 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ n\left(n+1\right) ਹੈ। \frac{1}{n} ਨੂੰ \frac{n+1}{n+1} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{1}{n+1} ਨੂੰ \frac{n}{n} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{n+1-n}{n\left(n+1\right)}
ਕਿਉਂਕਿ \frac{n+1}{n\left(n+1\right)} ਅਤੇ \frac{n}{n\left(n+1\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{1}{n\left(n+1\right)}
n+1-n ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{1}{n^{2}+n}
n\left(n+1\right) ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)})
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। n ਅਤੇ n+1 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ n\left(n+1\right) ਹੈ। \frac{1}{n} ਨੂੰ \frac{n+1}{n+1} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{1}{n+1} ਨੂੰ \frac{n}{n} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n+1-n}{n\left(n+1\right)})
ਕਿਉਂਕਿ \frac{n+1}{n\left(n+1\right)} ਅਤੇ \frac{n}{n\left(n+1\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{1}{n\left(n+1\right)})
n+1-n ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{1}{n^{2}+n})
n ਨੂੰ n+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-\left(n^{2}+n^{1}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}+n^{1})
ਜੇ F ਦੋ ਅੰਤਰ ਕੱਢਣ ਯੋਗ ਕਾਰਜਾਂ f\left(u\right) ਅਤੇ u=g\left(x\right) ਦਾ ਸੰਯੋਜਨ ਹੈ, ਯਾਂਨੀ, ਜੇF\left(x\right)=f\left(g\left(x\right)\right), F ਦਾ ਡੈਰੀਵੇਟਿਵ u ਦੇ ਸਬੰਧ ਵਿੱਚ f ਦਾ ਡੈਰੀਵੇਟਿਵ ਗੁਣਾ x ਦੇ ਸਬੰਧ ਵਿੱਚ g ਦਾ ਡੈਰੀਵੇਟਿਵ ਹੁੰਦਾ ਹੈ, ਯਾਂਨੀ, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right)।
-\left(n^{2}+n^{1}\right)^{-2}\left(2n^{2-1}+n^{1-1}\right)
ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਇਸ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਡੈਰੀਵੇਟਿਵਸ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਸਥਿਰ ਸੰਖਿਆ ਦਾ ਡੈਰੀਵੇਟਿਵ 0 ਹੁੰਦਾ ਹੈ। ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
\left(n^{2}+n^{1}\right)^{-2}\left(-2n^{1}-n^{0}\right)
ਸਪਸ਼ਟ ਕਰੋ।
\left(n^{2}+n\right)^{-2}\left(-2n-n^{0}\right)
ਕਿਸੇ t, t^{1}=t ਸੰਖਿਆ ਲਈ।
\left(n^{2}+n\right)^{-2}\left(-2n-1\right)
ਕਿਸੇ ਵੀ t ਸੰਖਿਆ ਲਈ, 0, t^{0}=1 ਨੂੰ ਛੱਡ ਕੇ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}