ਮੁਲਾਂਕਣ ਕਰੋ
\frac{1}{a}
ਅੰਤਰ ਦੱਸੋ w.r.t. a
-\frac{1}{a^{2}}
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{1}{a-1}-\frac{2}{a\left(a-2\right)}+\frac{1}{a^{2}-3a+2}
a^{2}-2a ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
\frac{a\left(a-2\right)}{a\left(a-2\right)\left(a-1\right)}-\frac{2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। a-1 ਅਤੇ a\left(a-2\right) ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ a\left(a-2\right)\left(a-1\right) ਹੈ। \frac{1}{a-1} ਨੂੰ \frac{a\left(a-2\right)}{a\left(a-2\right)} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{2}{a\left(a-2\right)} ਨੂੰ \frac{a-1}{a-1} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{a\left(a-2\right)-2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2}
ਕਿਉਂਕਿ \frac{a\left(a-2\right)}{a\left(a-2\right)\left(a-1\right)} ਅਤੇ \frac{2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{a^{2}-2a-2a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2}
a\left(a-2\right)-2\left(a-1\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2}
a^{2}-2a-2a+2 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{\left(a-2\right)\left(a-1\right)}
a^{2}-3a+2 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{a}{a\left(a-2\right)\left(a-1\right)}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। a\left(a-2\right)\left(a-1\right) ਅਤੇ \left(a-2\right)\left(a-1\right) ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ a\left(a-2\right)\left(a-1\right) ਹੈ। \frac{1}{\left(a-2\right)\left(a-1\right)} ਨੂੰ \frac{a}{a} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{a^{2}-4a+2+a}{a\left(a-2\right)\left(a-1\right)}
ਕਿਉਂਕਿ \frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)} ਅਤੇ \frac{a}{a\left(a-2\right)\left(a-1\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{a^{2}-3a+2}{a\left(a-2\right)\left(a-1\right)}
a^{2}-4a+2+a ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\left(a-2\right)\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}
\frac{a^{2}-3a+2}{a\left(a-2\right)\left(a-1\right)} ਵਿੱਚ ਪਹਿਲਾਂ ਹੀ ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{1}{a}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ \left(a-2\right)\left(a-1\right) ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a-1}-\frac{2}{a\left(a-2\right)}+\frac{1}{a^{2}-3a+2})
a^{2}-2a ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a-2\right)}{a\left(a-2\right)\left(a-1\right)}-\frac{2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2})
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। a-1 ਅਤੇ a\left(a-2\right) ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ a\left(a-2\right)\left(a-1\right) ਹੈ। \frac{1}{a-1} ਨੂੰ \frac{a\left(a-2\right)}{a\left(a-2\right)} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{2}{a\left(a-2\right)} ਨੂੰ \frac{a-1}{a-1} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a-2\right)-2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2})
ਕਿਉਂਕਿ \frac{a\left(a-2\right)}{a\left(a-2\right)\left(a-1\right)} ਅਤੇ \frac{2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-2a-2a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2})
a\left(a-2\right)-2\left(a-1\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2})
a^{2}-2a-2a+2 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{\left(a-2\right)\left(a-1\right)})
a^{2}-3a+2 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{a}{a\left(a-2\right)\left(a-1\right)})
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। a\left(a-2\right)\left(a-1\right) ਅਤੇ \left(a-2\right)\left(a-1\right) ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ a\left(a-2\right)\left(a-1\right) ਹੈ। \frac{1}{\left(a-2\right)\left(a-1\right)} ਨੂੰ \frac{a}{a} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-4a+2+a}{a\left(a-2\right)\left(a-1\right)})
ਕਿਉਂਕਿ \frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)} ਅਤੇ \frac{a}{a\left(a-2\right)\left(a-1\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-3a+2}{a\left(a-2\right)\left(a-1\right)})
a^{2}-4a+2+a ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a-2\right)\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)})
\frac{a^{2}-3a+2}{a\left(a-2\right)\left(a-1\right)} ਵਿੱਚ ਪਹਿਲਾਂ ਹੀ ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a})
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ \left(a-2\right)\left(a-1\right) ਨੂੰ ਰੱਦ ਕਰੋ।
-a^{-1-1}
ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
-a^{-2}
-1 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}