x ਲਈ ਹਲ ਕਰੋ
x=-1
ਗ੍ਰਾਫ
ਕੁਇਜ਼
Linear Equation
5 ਪ੍ਰਸ਼ਨ ਇਸ ਵਰਗੇ ਹਨ:
\frac { 1 } { 4 } - \frac { 2 } { 3 } x = \frac { 11 } { 12 }
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-\frac{2}{3}x=\frac{11}{12}-\frac{1}{4}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{1}{4} ਨੂੰ ਘਟਾ ਦਿਓ।
-\frac{2}{3}x=\frac{11}{12}-\frac{3}{12}
12 ਅਤੇ 4 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 12 ਹੈ। \frac{11}{12} ਅਤੇ \frac{1}{4} ਨੂੰ 12 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
-\frac{2}{3}x=\frac{11-3}{12}
ਕਿਉਂਕਿ \frac{11}{12} ਅਤੇ \frac{3}{12} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
-\frac{2}{3}x=\frac{8}{12}
8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 11 ਵਿੱਚੋਂ 3 ਨੂੰ ਘਟਾ ਦਿਓ।
-\frac{2}{3}x=\frac{2}{3}
4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{8}{12} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=\frac{2}{3}\left(-\frac{3}{2}\right)
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -\frac{3}{2}, -\frac{2}{3} ਦੇ ਦੁਪਾਸੜ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x=\frac{2\left(-3\right)}{3\times 2}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{2}{3} ਟਾਈਮਸ -\frac{3}{2} ਨੂੰ ਗੁਣਾ ਕਰੋ।
x=\frac{-3}{3}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ 2 ਨੂੰ ਰੱਦ ਕਰੋ।
x=-1
-3 ਨੂੰ 3 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -1 ਨਿਕਲੇ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}