ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਅੰਤਰ ਦੱਸੋ w.r.t. x
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{1}{4}\times \frac{157}{50}\times 48^{2}x
ਦਸ਼ਮਲਵ ਨੰਬਰ 3.14 ਨੂੰ ਇਸਦੀ ਤਰਕਸ਼ੀਲ ਪੇਸ਼ਕਾਰੀ \frac{314}{100} 'ਤੇ ਬਦਲੋ। 2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{314}{100} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{1\times 157}{4\times 50}\times 48^{2}x
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{1}{4} ਟਾਈਮਸ \frac{157}{50} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{157}{200}\times 48^{2}x
\frac{1\times 157}{4\times 50} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{157}{200}\times 2304x
48 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 2304 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{157\times 2304}{200}x
\frac{157}{200}\times 2304 ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{361728}{200}x
361728 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 157 ਅਤੇ 2304 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{45216}{25}x
8 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{361728}{200} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{4}\times \frac{157}{50}\times 48^{2}x)
ਦਸ਼ਮਲਵ ਨੰਬਰ 3.14 ਨੂੰ ਇਸਦੀ ਤਰਕਸ਼ੀਲ ਪੇਸ਼ਕਾਰੀ \frac{314}{100} 'ਤੇ ਬਦਲੋ। 2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{314}{100} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1\times 157}{4\times 50}\times 48^{2}x)
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{1}{4} ਟਾਈਮਸ \frac{157}{50} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{157}{200}\times 48^{2}x)
\frac{1\times 157}{4\times 50} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{157}{200}\times 2304x)
48 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 2304 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{157\times 2304}{200}x)
\frac{157}{200}\times 2304 ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{361728}{200}x)
361728 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 157 ਅਤੇ 2304 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{45216}{25}x)
8 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{361728}{200} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{45216}{25}x^{1-1}
ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
\frac{45216}{25}x^{0}
1 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾਓ।
\frac{45216}{25}\times 1
ਕਿਸੇ ਵੀ t ਸੰਖਿਆ ਲਈ, 0, t^{0}=1 ਨੂੰ ਛੱਡ ਕੇ।
\frac{45216}{25}
ਕਿਸੇ ਸੰਖਿਆ t, t\times 1=t ਅਤੇ 1t=t ਲਈ।