ਮੁਲਾਂਕਣ ਕਰੋ
7.125
ਫੈਕਟਰ
\frac{3 \cdot 19}{2 ^ {3}} = 7\frac{1}{8} = 7.125
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{1}{4}\times \frac{157}{50}\times 25-\frac{1}{2}\times 5\times 5
ਦਸ਼ਮਲਵ ਨੰਬਰ 3.14 ਨੂੰ ਇਸਦੀ ਤਰਕਸ਼ੀਲ ਪੇਸ਼ਕਾਰੀ \frac{314}{100} 'ਤੇ ਬਦਲੋ। 2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{314}{100} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{1\times 157}{4\times 50}\times 25-\frac{1}{2}\times 5\times 5
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{1}{4} ਟਾਈਮਸ \frac{157}{50} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{157}{200}\times 25-\frac{1}{2}\times 5\times 5
\frac{1\times 157}{4\times 50} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{157\times 25}{200}-\frac{1}{2}\times 5\times 5
\frac{157}{200}\times 25 ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{3925}{200}-\frac{1}{2}\times 5\times 5
3925 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 157 ਅਤੇ 25 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{157}{8}-\frac{1}{2}\times 5\times 5
25 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{3925}{200} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{157}{8}-\frac{5}{2}\times 5
\frac{5}{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{1}{2} ਅਤੇ 5 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{157}{8}-\frac{5\times 5}{2}
\frac{5}{2}\times 5 ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{157}{8}-\frac{25}{2}
25 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 5 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{157}{8}-\frac{100}{8}
8 ਅਤੇ 2 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 8 ਹੈ। \frac{157}{8} ਅਤੇ \frac{25}{2} ਨੂੰ 8 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{157-100}{8}
ਕਿਉਂਕਿ \frac{157}{8} ਅਤੇ \frac{100}{8} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{57}{8}
57 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 157 ਵਿੱਚੋਂ 100 ਨੂੰ ਘਟਾ ਦਿਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}