ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

1+3x\left(-2\right)=2x\times 3x+3x\left(-3\right)
ਵੇਰੀਏਬਲ x, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3x ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
1-6x=2x\times 3x+3x\left(-3\right)
-6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਅਤੇ -2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
1-6x=2x^{2}\times 3+3x\left(-3\right)
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
1-6x=6x^{2}+3x\left(-3\right)
6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
1-6x=6x^{2}-9x
-9 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਅਤੇ -3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
1-6x-6x^{2}=-9x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 6x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
1-6x-6x^{2}+9x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 9x ਜੋੜੋ।
1+3x-6x^{2}=0
3x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6x ਅਤੇ 9x ਨੂੰ ਮਿਲਾਓ।
-6x^{2}+3x+1=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-3±\sqrt{3^{2}-4\left(-6\right)}}{2\left(-6\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -6 ਨੂੰ a ਲਈ, 3 ਨੂੰ b ਲਈ, ਅਤੇ 1 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-3±\sqrt{9-4\left(-6\right)}}{2\left(-6\right)}
3 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-3±\sqrt{9+24}}{2\left(-6\right)}
-4 ਨੂੰ -6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-3±\sqrt{33}}{2\left(-6\right)}
9 ਨੂੰ 24 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-3±\sqrt{33}}{-12}
2 ਨੂੰ -6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{\sqrt{33}-3}{-12}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-3±\sqrt{33}}{-12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -3 ਨੂੰ \sqrt{33} ਵਿੱਚ ਜੋੜੋ।
x=-\frac{\sqrt{33}}{12}+\frac{1}{4}
-3+\sqrt{33} ਨੂੰ -12 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-\sqrt{33}-3}{-12}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-3±\sqrt{33}}{-12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -3 ਵਿੱਚੋਂ \sqrt{33} ਨੂੰ ਘਟਾਓ।
x=\frac{\sqrt{33}}{12}+\frac{1}{4}
-3-\sqrt{33} ਨੂੰ -12 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{\sqrt{33}}{12}+\frac{1}{4} x=\frac{\sqrt{33}}{12}+\frac{1}{4}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
1+3x\left(-2\right)=2x\times 3x+3x\left(-3\right)
ਵੇਰੀਏਬਲ x, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3x ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
1-6x=2x\times 3x+3x\left(-3\right)
-6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਅਤੇ -2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
1-6x=2x^{2}\times 3+3x\left(-3\right)
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
1-6x=6x^{2}+3x\left(-3\right)
6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
1-6x=6x^{2}-9x
-9 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਅਤੇ -3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
1-6x-6x^{2}=-9x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 6x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
1-6x-6x^{2}+9x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 9x ਜੋੜੋ।
1+3x-6x^{2}=0
3x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6x ਅਤੇ 9x ਨੂੰ ਮਿਲਾਓ।
3x-6x^{2}=-1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
-6x^{2}+3x=-1
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-6x^{2}+3x}{-6}=-\frac{1}{-6}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -6 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{3}{-6}x=-\frac{1}{-6}
-6 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -6 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{1}{2}x=-\frac{1}{-6}
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{3}{-6} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}-\frac{1}{2}x=\frac{1}{6}
-1 ਨੂੰ -6 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{1}{6}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{1}{4} ਨਿਕਲੇ। ਫੇਰ, -\frac{1}{4} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{6}+\frac{1}{16}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{1}{4} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{11}{48}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{1}{6} ਨੂੰ \frac{1}{16} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{1}{4}\right)^{2}=\frac{11}{48}
ਫੈਕਟਰ x^{2}-\frac{1}{2}x+\frac{1}{16}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{11}{48}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{1}{4}=\frac{\sqrt{33}}{12} x-\frac{1}{4}=-\frac{\sqrt{33}}{12}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{33}}{12}+\frac{1}{4} x=-\frac{\sqrt{33}}{12}+\frac{1}{4}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{1}{4} ਨੂੰ ਜੋੜੋ।