ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

6x\left(x+2\right)\times \frac{1}{3}+6x+12=6x-\left(x+2\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -2,0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6x\left(x+2\right), ਜੋ 3,x,2+x,6x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(6x^{2}+12x\right)\times \frac{1}{3}+6x+12=6x-\left(x+2\right)
6x ਨੂੰ x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2x^{2}+4x+6x+12=6x-\left(x+2\right)
6x^{2}+12x ਨੂੰ \frac{1}{3} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2x^{2}+10x+12=6x-\left(x+2\right)
10x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x ਅਤੇ 6x ਨੂੰ ਮਿਲਾਓ।
2x^{2}+10x+12=6x-x-2
x+2 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
2x^{2}+10x+12=5x-2
5x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
2x^{2}+10x+12-5x=-2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5x ਨੂੰ ਘਟਾ ਦਿਓ।
2x^{2}+5x+12=-2
5x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 10x ਅਤੇ -5x ਨੂੰ ਮਿਲਾਓ।
2x^{2}+5x+12+2=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2 ਜੋੜੋ।
2x^{2}+5x+14=0
14 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12 ਅਤੇ 2 ਨੂੰ ਜੋੜੋ।
x=\frac{-5±\sqrt{5^{2}-4\times 2\times 14}}{2\times 2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 2 ਨੂੰ a ਲਈ, 5 ਨੂੰ b ਲਈ, ਅਤੇ 14 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-5±\sqrt{25-4\times 2\times 14}}{2\times 2}
5 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-5±\sqrt{25-8\times 14}}{2\times 2}
-4 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-5±\sqrt{25-112}}{2\times 2}
-8 ਨੂੰ 14 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-5±\sqrt{-87}}{2\times 2}
25 ਨੂੰ -112 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-5±\sqrt{87}i}{2\times 2}
-87 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-5±\sqrt{87}i}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-5+\sqrt{87}i}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-5±\sqrt{87}i}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -5 ਨੂੰ i\sqrt{87} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\sqrt{87}i-5}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-5±\sqrt{87}i}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -5 ਵਿੱਚੋਂ i\sqrt{87} ਨੂੰ ਘਟਾਓ।
x=\frac{-5+\sqrt{87}i}{4} x=\frac{-\sqrt{87}i-5}{4}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
6x\left(x+2\right)\times \frac{1}{3}+6x+12=6x-\left(x+2\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -2,0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6x\left(x+2\right), ਜੋ 3,x,2+x,6x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(6x^{2}+12x\right)\times \frac{1}{3}+6x+12=6x-\left(x+2\right)
6x ਨੂੰ x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2x^{2}+4x+6x+12=6x-\left(x+2\right)
6x^{2}+12x ਨੂੰ \frac{1}{3} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2x^{2}+10x+12=6x-\left(x+2\right)
10x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x ਅਤੇ 6x ਨੂੰ ਮਿਲਾਓ।
2x^{2}+10x+12=6x-x-2
x+2 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
2x^{2}+10x+12=5x-2
5x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
2x^{2}+10x+12-5x=-2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5x ਨੂੰ ਘਟਾ ਦਿਓ।
2x^{2}+5x+12=-2
5x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 10x ਅਤੇ -5x ਨੂੰ ਮਿਲਾਓ।
2x^{2}+5x=-2-12
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 12 ਨੂੰ ਘਟਾ ਦਿਓ।
2x^{2}+5x=-14
-14 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2 ਵਿੱਚੋਂ 12 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{2x^{2}+5x}{2}=-\frac{14}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{5}{2}x=-\frac{14}{2}
2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{5}{2}x=-7
-14 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=-7+\left(\frac{5}{4}\right)^{2}
\frac{5}{2}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{5}{4} ਨਿਕਲੇ। ਫੇਰ, \frac{5}{4} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{5}{2}x+\frac{25}{16}=-7+\frac{25}{16}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{5}{4} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{5}{2}x+\frac{25}{16}=-\frac{87}{16}
-7 ਨੂੰ \frac{25}{16} ਵਿੱਚ ਜੋੜੋ।
\left(x+\frac{5}{4}\right)^{2}=-\frac{87}{16}
ਫੈਕਟਰ x^{2}+\frac{5}{2}x+\frac{25}{16}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{-\frac{87}{16}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{5}{4}=\frac{\sqrt{87}i}{4} x+\frac{5}{4}=-\frac{\sqrt{87}i}{4}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{-5+\sqrt{87}i}{4} x=\frac{-\sqrt{87}i-5}{4}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{5}{4} ਨੂੰ ਘਟਾਓ।