ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{1}{2}x^{2}+x-12=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{2}\left(-12\right)}}{2\times \frac{1}{2}}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ \frac{1}{2} ਨੂੰ a ਲਈ, 1 ਨੂੰ b ਲਈ, ਅਤੇ -12 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-1±\sqrt{1-4\times \frac{1}{2}\left(-12\right)}}{2\times \frac{1}{2}}
1 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-1±\sqrt{1-2\left(-12\right)}}{2\times \frac{1}{2}}
-4 ਨੂੰ \frac{1}{2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-1±\sqrt{1+24}}{2\times \frac{1}{2}}
-2 ਨੂੰ -12 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-1±\sqrt{25}}{2\times \frac{1}{2}}
1 ਨੂੰ 24 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-1±5}{2\times \frac{1}{2}}
25 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-1±5}{1}
2 ਨੂੰ \frac{1}{2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{4}{1}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-1±5}{1} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -1 ਨੂੰ 5 ਵਿੱਚ ਜੋੜੋ।
x=4
4 ਨੂੰ 1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{6}{1}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-1±5}{1} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -1 ਵਿੱਚੋਂ 5 ਨੂੰ ਘਟਾਓ।
x=-6
-6 ਨੂੰ 1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=4 x=-6
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\frac{1}{2}x^{2}+x-12=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{1}{2}x^{2}+x-12-\left(-12\right)=-\left(-12\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 12 ਨੂੰ ਜੋੜੋ।
\frac{1}{2}x^{2}+x=-\left(-12\right)
-12 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{1}{2}x^{2}+x=12
0 ਵਿੱਚੋਂ -12 ਨੂੰ ਘਟਾਓ।
\frac{\frac{1}{2}x^{2}+x}{\frac{1}{2}}=\frac{12}{\frac{1}{2}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}+\frac{1}{\frac{1}{2}}x=\frac{12}{\frac{1}{2}}
\frac{1}{2} ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ \frac{1}{2} ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+2x=\frac{12}{\frac{1}{2}}
1 ਨੂੰ \frac{1}{2} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 1ਨੂੰ \frac{1}{2} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+2x=24
12 ਨੂੰ \frac{1}{2} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 12ਨੂੰ \frac{1}{2} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+2x+1^{2}=24+1^{2}
2, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 1 ਨਿਕਲੇ। ਫੇਰ, 1 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+2x+1=24+1
1 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}+2x+1=25
24 ਨੂੰ 1 ਵਿੱਚ ਜੋੜੋ।
\left(x+1\right)^{2}=25
ਫੈਕਟਰ x^{2}+2x+1। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+1\right)^{2}}=\sqrt{25}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+1=5 x+1=-5
ਸਪਸ਼ਟ ਕਰੋ।
x=4 x=-6
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾਓ।