ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਵਾਸਤਵਿਕ ਭਾਗ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{1\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+i
\frac{1}{1+i} ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਨੂੰ, ਡੀਨੋਮਿਨੇਟਰ 1-i ਦੇ ਕੋਮਪਲੈਕਸ ਕੰਜੂਗੇਟ (ਸੰਯੁਜਮੀ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\frac{1\left(1-i\right)}{1^{2}-i^{2}}+i
ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\frac{1\left(1-i\right)}{2}+i
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ। ਡੀਨੋਮਿਨੇਟਰ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
\frac{1-i}{2}+i
1-i ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 1-i ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{1}{2}-\frac{1}{2}i+i
1-i ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{2}-\frac{1}{2}i ਨਿਕਲੇ।
\frac{1}{2}+\left(-\frac{1}{2}+1\right)i
\frac{1}{2}-\frac{1}{2}i ਅਤੇ i ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਵਾਸਤਵਿਕ ਅਤੇ ਕਾਲਪਨਿਕ ਹਿੱਸਿਆਂ ਨੂੰ ਮਿਲਾਓ।
\frac{1}{2}+\frac{1}{2}i
-\frac{1}{2} ਨੂੰ 1 ਵਿੱਚ ਜੋੜੋ।
Re(\frac{1\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+i)
\frac{1}{1+i} ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਨੂੰ, ਡੀਨੋਮਿਨੇਟਰ 1-i ਦੇ ਕੋਮਪਲੈਕਸ ਕੰਜੂਗੇਟ (ਸੰਯੁਜਮੀ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
Re(\frac{1\left(1-i\right)}{1^{2}-i^{2}}+i)
ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
Re(\frac{1\left(1-i\right)}{2}+i)
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ। ਡੀਨੋਮਿਨੇਟਰ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
Re(\frac{1-i}{2}+i)
1-i ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 1-i ਨੂੰ ਗੁਣਾ ਕਰੋ।
Re(\frac{1}{2}-\frac{1}{2}i+i)
1-i ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{2}-\frac{1}{2}i ਨਿਕਲੇ।
Re(\frac{1}{2}+\left(-\frac{1}{2}+1\right)i)
\frac{1}{2}-\frac{1}{2}i ਅਤੇ i ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਵਾਸਤਵਿਕ ਅਤੇ ਕਾਲਪਨਿਕ ਹਿੱਸਿਆਂ ਨੂੰ ਮਿਲਾਓ।
Re(\frac{1}{2}+\frac{1}{2}i)
-\frac{1}{2} ਨੂੰ 1 ਵਿੱਚ ਜੋੜੋ।
\frac{1}{2}
\frac{1}{2}+\frac{1}{2}i ਦਾ ਅਸਲੀ ਹਿੱਸਾ \frac{1}{2} ਹੈ।