ਮੁਲਾਂਕਣ ਕਰੋ
\frac{1}{2}+\frac{1}{2}i=0.5+0.5i
ਵਾਸਤਵਿਕ ਭਾਗ
\frac{1}{2} = 0.5
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{1\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+i
\frac{1}{1+i} ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਨੂੰ, ਡੀਨੋਮਿਨੇਟਰ 1-i ਦੇ ਕੋਮਪਲੈਕਸ ਕੰਜੂਗੇਟ (ਸੰਯੁਜਮੀ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\frac{1\left(1-i\right)}{1^{2}-i^{2}}+i
ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\frac{1\left(1-i\right)}{2}+i
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ। ਡੀਨੋਮਿਨੇਟਰ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
\frac{1-i}{2}+i
1-i ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 1-i ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{1}{2}-\frac{1}{2}i+i
1-i ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{2}-\frac{1}{2}i ਨਿਕਲੇ।
\frac{1}{2}+\left(-\frac{1}{2}+1\right)i
\frac{1}{2}-\frac{1}{2}i ਅਤੇ i ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਵਾਸਤਵਿਕ ਅਤੇ ਕਾਲਪਨਿਕ ਹਿੱਸਿਆਂ ਨੂੰ ਮਿਲਾਓ।
\frac{1}{2}+\frac{1}{2}i
-\frac{1}{2} ਨੂੰ 1 ਵਿੱਚ ਜੋੜੋ।
Re(\frac{1\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+i)
\frac{1}{1+i} ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਨੂੰ, ਡੀਨੋਮਿਨੇਟਰ 1-i ਦੇ ਕੋਮਪਲੈਕਸ ਕੰਜੂਗੇਟ (ਸੰਯੁਜਮੀ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
Re(\frac{1\left(1-i\right)}{1^{2}-i^{2}}+i)
ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
Re(\frac{1\left(1-i\right)}{2}+i)
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ। ਡੀਨੋਮਿਨੇਟਰ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
Re(\frac{1-i}{2}+i)
1-i ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 1-i ਨੂੰ ਗੁਣਾ ਕਰੋ।
Re(\frac{1}{2}-\frac{1}{2}i+i)
1-i ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{2}-\frac{1}{2}i ਨਿਕਲੇ।
Re(\frac{1}{2}+\left(-\frac{1}{2}+1\right)i)
\frac{1}{2}-\frac{1}{2}i ਅਤੇ i ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਵਾਸਤਵਿਕ ਅਤੇ ਕਾਲਪਨਿਕ ਹਿੱਸਿਆਂ ਨੂੰ ਮਿਲਾਓ।
Re(\frac{1}{2}+\frac{1}{2}i)
-\frac{1}{2} ਨੂੰ 1 ਵਿੱਚ ਜੋੜੋ।
\frac{1}{2}
\frac{1}{2}+\frac{1}{2}i ਦਾ ਅਸਲੀ ਹਿੱਸਾ \frac{1}{2} ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}