ਮੁਲਾਂਕਣ ਕਰੋ
-\frac{3}{5}+\frac{4}{5}i=-0.6+0.8i
ਵਾਸਤਵਿਕ ਭਾਗ
-\frac{3}{5} = -0.6
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{\left(1+2i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਨੂੰ, ਡੀਨੋਮਿਨੇਟਰ 1+2i ਦੇ ਕੋਮਪਲੈਕਸ ਕੰਜੂਗੇਟ (ਸੰਯੁਜਮੀ) ਨਾਲ ਗੁਣਾ ਕਰੋ।
\frac{\left(1+2i\right)\left(1+2i\right)}{1^{2}-2^{2}i^{2}}
ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\frac{\left(1+2i\right)\left(1+2i\right)}{5}
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ। ਡੀਨੋਮਿਨੇਟਰ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
\frac{1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2i^{2}}{5}
ਜਟਿਲ ਸੰਖਿਆਵਾਂ 1+2i ਅਤੇ 1+2i ਨੂੰ ਗੁਣਾ ਕਰੋ, ਜਿਵੇਂ ਤੁਸੀਂ ਬਾਈਨੋਮਿਅਲਸ ਨੂੰ ਗੁਣਾ ਕਰਦੇ ਹੋ।
\frac{1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2\left(-1\right)}{5}
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ।
\frac{1+2i+2i-4}{5}
1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2\left(-1\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{1-4+\left(2+2\right)i}{5}
1+2i+2i-4 ਵਿੱਚ ਵਾਸਤਵਿਕ ਅਤੇ ਕਾਲਪਨਿਕ ਹਿੱਸਿਆਂ ਨੂੰ ਮਿਲਾਓ।
\frac{-3+4i}{5}
1-4+\left(2+2\right)i ਵਿੱਚ ਜੋੜ ਕਰੋ।
-\frac{3}{5}+\frac{4}{5}i
-3+4i ਨੂੰ 5 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{3}{5}+\frac{4}{5}i ਨਿਕਲੇ।
Re(\frac{\left(1+2i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)})
\frac{1+2i}{1-2i} ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਨੂੰ, ਡੀਨੋਮਿਨੇਟਰ 1+2i ਦੇ ਕੋਮਪਲੈਕਸ ਕੰਜੂਗੇਟ (ਸੰਯੁਜਮੀ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
Re(\frac{\left(1+2i\right)\left(1+2i\right)}{1^{2}-2^{2}i^{2}})
ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
Re(\frac{\left(1+2i\right)\left(1+2i\right)}{5})
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ। ਡੀਨੋਮਿਨੇਟਰ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
Re(\frac{1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2i^{2}}{5})
ਜਟਿਲ ਸੰਖਿਆਵਾਂ 1+2i ਅਤੇ 1+2i ਨੂੰ ਗੁਣਾ ਕਰੋ, ਜਿਵੇਂ ਤੁਸੀਂ ਬਾਈਨੋਮਿਅਲਸ ਨੂੰ ਗੁਣਾ ਕਰਦੇ ਹੋ।
Re(\frac{1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2\left(-1\right)}{5})
ਪਰਿਭਾਸ਼ਾ ਦੁਆਰਾ, i^{2}, -1 ਹੈ।
Re(\frac{1+2i+2i-4}{5})
1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2\left(-1\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
Re(\frac{1-4+\left(2+2\right)i}{5})
1+2i+2i-4 ਵਿੱਚ ਵਾਸਤਵਿਕ ਅਤੇ ਕਾਲਪਨਿਕ ਹਿੱਸਿਆਂ ਨੂੰ ਮਿਲਾਓ।
Re(\frac{-3+4i}{5})
1-4+\left(2+2\right)i ਵਿੱਚ ਜੋੜ ਕਰੋ।
Re(-\frac{3}{5}+\frac{4}{5}i)
-3+4i ਨੂੰ 5 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{3}{5}+\frac{4}{5}i ਨਿਕਲੇ।
-\frac{3}{5}
-\frac{3}{5}+\frac{4}{5}i ਦਾ ਅਸਲੀ ਹਿੱਸਾ -\frac{3}{5} ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}